Vous avez manqué un cours ? Votre cours vous semble sommaire ? Vous souhaitez aller plus loin ? Français, mathématiques, langues étrangères, SVT, physique-chimie ou Histoire-Géographie… Avec Youscribe, vous êtes à la bonne adresse, car vous trouverez tous les cours que vous recherchez à télécharger directement sur cette page ! Grâce à cette thématique, vous aurez accès à un large choix de cours à distance pour du soutien scolaire.
Youscribe vous propose de télécharger, gratuitement ou de manière payante, de nombreux cours et exercices (corrigés ou non) en ligne, qui vous permettront de mesurer votre maitrise du sujet. Comme ça vous aurez tout ce qu’il faut pour réussir un devoir ou un examen, car réviser grâce à des cours ou des exercices est une méthode pédagogique gagnante.
Simple et rapide d’utilisation, notre site – dont cette thématique sur les cours en ligne – vous aidera à chaque étape de votre parcours scolaire : dans vos révisions scolaires, vos devoirs ou vos préparations d’examens. C’est pour cela que nos différents cours en ligne, du CP à la terminale et même après, sont faits pour vous.
En effet, si vous avez un problème pour comprendre un cours, car vous n’avez pas bien écouté le professeur ou alors que ce dernier a mal expliqué, vous pourrez télécharger tout ce que vous voulez dans notre thématique sur les cours. Nous proposons aussi des manuels scolaires en ligne (sur cette page) qui vous permettront de mieux comprendre un cours.
Afin de vous aider à progresser dans les matières phares, nous vous proposons de nombreux cours et exercices en ligne. Vous pourrez donc télécharger nos cours quel que soit votre classe ou votre matière. Si vous êtes à la recherche de résumés de livres ou fiches de lecture, rendez-vous ici.
Français (grammaire, orthographe, conjugaison…), mathématiques, langues, physique/chimie, histoire-géographie… Les matières principales sont explorées sous différents angles afin de répondre aux problématiques des élèves.
Concernant les cours de langues, nous vous conseillons de vous rendre aussi dans la thématique sur les langues. Vous découvrez de nombreux documents pour apprendre les langues.
Besoin d’une aide scolaire particulière, pourquoi ne pas parcourir notre catalogue composé de cours en ligne. Nous traitons de certains points importants, comme les cours sur les divisions euclidiennes.
Au-delà des matières scolaires, certains sujets peuvent vous sembler obscurs. Qu’est-ce que le marketing mix, comment calculer une TVA, ou encore qu’est-ce que la loi de l’offre et de la demande ?... Si c'est le cas, pas de panique !
Grâce à Youscribe, vous trouverez de nombreux cours et exercices traitant de ces sujets, que vous soyez débutant ou d’un niveau plus avancé. En quelques clics, vous accéderez aux derniers dossiers et exercices pratiques publiés et comblerez rapidement toutes vos lacunes.
Grâce à la participation d’étudiants et de professeurs, les supports pédagogiques sont régulièrement enrichis, assurant ainsi la qualité et la diversité des cours en ligne. Vous disposez d’un cours intéressant et bien écrit ? N’hésitez pas à le publier pour en faire profiter vos camarades !
Tous vos cours peuvent nous intéresser, que vous ayez des cours de seconde, de terminale, de collège, d’études supérieures ou bien de primaire. Youscribe fonctionne avec le principe de partage de la communauté, alors n’hésitez plus à mettre en ligne vos publications si vous avez des cours de SVT pour sixième ou pour d'autres classes et d'autres matières.
Avec votre contenu, de nombreux élèves trouveront le bon cours et ne passeront plus des heures à les rechercher sur internet.
A explorer également dans d’autres thématiques : nos dossiers consacrés aux stages (rapport de stage) ou bien un nos corrigé de devoir, toujours d’en le but d’améliorer vos notes.
Documents
Ch T2 Potentiels thermodynamiques Energie libre Enthalpie libre POTENTIELS THERMODYNAMIQUES ÉNERGIE LIBRE ENTHALPIE LIBRE LES POTENTIELS THERMODYNAMIQUES Introduction la néguentropie Nous étudierons dans ce chapitre les systèmes hors d'équilibre et leur évolution vers un état d'équilibre La recherche d'une position d'équilibre est un problème classique en mécanique quand un système mécanique est soumis des forces dérivant d'une énergie potentielle la recherche d'un minimum de cette énergie nous conduit aux états d'équilibre stable Existerait il alors en thermodynamique des fonctions jouant le même rôle et qu'on pourrait alors appeler potentiels thermodynamiques L'évolution d'un système thermodynamique est étudiée par le second principe Celui ci on l'a vu permet de distinguer les transformations idéales réversibles et les transformations réelles irréversibles Notons bien que si un système est hors d'équilibre il subit une transformation spontanée nécessairement irréversible A cette irréversibilité est associée une création d'entropie mais le terme de transfert est lui de signe quelconque Cependant si le système est isolé seul subsiste le terme de création un système isolé hors d'équilibre évolue toujours en augmentant son entropie S'il atteint un état d'équilibre son entropie dans cet état ne peut être que maximale Par analogie avec la mécanique on est alors tenté de définir une néguentropie S* S qui elle serait minimale l'équilibre Tout système isolé hors d'équilibre évolue vers un état d'équilibre qui correspond un minimum de la néguentropie S La néguentropie répond bien l'attente qu'on en avait elle joue le rôle pour un système isolé de potentiel thermodynamique indiquant par son minimum l'état d'équilibre du système Elle a cependant un gros défaut la nécessité de considérer un système isolé donc soumis des transformations internes uniquement ce qui n'est guère réalisé en pratique Il nous faut donc inventer de nouveaux potentiels thermodynamiques pour des systèmes non isolés
Françoise Briffaut
Documents
Cours
Ch T2 Potentiels thermodynamiques Energie libre Enthalpie libre POTENTIELS THERMODYNAMIQUES ÉNERGIE LIBRE ENTHALPIE LIBRE LES POTENTIELS THERMODYNAMIQUES Introduction la néguentropie Nous étudierons dans ce chapitre les systèmes hors d'équilibre et leur évolution vers un état d'équilibre La recherche d'une position d'équilibre est un problème classique en mécanique quand un système mécanique est soumis des forces dérivant d'une énergie potentielle la recherche d'un minimum de cette énergie nous conduit aux états d'équilibre stable Existerait il alors en thermodynamique des fonctions jouant le même rôle et qu'on pourrait alors appeler potentiels thermodynamiques L'évolution d'un système thermodynamique est étudiée par le second principe Celui ci on l'a vu permet de distinguer les transformations idéales réversibles et les transformations réelles irréversibles Notons bien que si un système est hors d'équilibre il subit une transformation spontanée nécessairement irréversible A cette irréversibilité est associée une création d'entropie mais le terme de transfert est lui de signe quelconque Cependant si le système est isolé seul subsiste le terme de création un système isolé hors d'équilibre évolue toujours en augmentant son entropie S'il atteint un état d'équilibre son entropie dans cet état ne peut être que maximale Par analogie avec la mécanique on est alors tenté de définir une néguentropie S* S qui elle serait minimale l'équilibre Tout système isolé hors d'équilibre évolue vers un état d'équilibre qui correspond un minimum de la néguentropie S La néguentropie répond bien l'attente qu'on en avait elle joue le rôle pour un système isolé de potentiel thermodynamique indiquant par son minimum l'état d'équilibre du système Elle a cependant un gros défaut la nécessité de considérer un système isolé donc soumis des transformations internes uniquement ce qui n'est guère réalisé en pratique Il nous faut donc inventer de nouveaux potentiels thermodynamiques pour des systèmes non isolés
Françoise Briffaut
6 pages
Français
Collection
{{collectionTitle}}
Collection
{{collectionTitle}}
Collection
{{collectionTitle}}
{{productCategoryLabel}}
{{productTitle}}
{{productAuthors}}
{{productCategoryLabel}}
{{productThemeLabel}}
{{productTitle}}
{{productAuthors}}
{{productPages}}
{{productLanguageIsoCode}}