Ω(E)
ω(E)
Keq
r N Nr
Nrr N → ∞
N
r
NrP = limr
N→∞ N
0≤P ≤1r
x ={0,1} 0
1
x={1,2,3,4,5,6}
Pi
P(rous)=P +Pr s
s r
X
P =1i
i
0 2π
8 −10 c≈3.10 m.s
dP(x)
x dx dx
dP(x)=w(x).dx
w(x)
Z
w(x).dx=1
D
D x
2dP(x,y,z)=|Ψ| .dxdydz
s
P w(x)i
x x
i
0.4
Courbe de Gauss
0.3
0.2
0.1
0–2 2 4 6
x
tew(x)=C
2(x−m)1 − 22σw(x)= √ e
22πσ
m σ
σ
w(x)= 2 2π(x +σ )
n nn x x f
P
f = P.f(x (casdiscret)i i)iR
f = w(x).f(x)dx (cascontinu)D
x
Δx
Δx δx =
x−x δx = 0
q q p
22 2 2Δx= (δx) = (x−x) = x −x
2(x−m)1 − 22σ√w(x)= e
22πσ
Z Z∞ ∞ 2(x−m)1 − 22σx= x.w(x).dx= √ xe .dx
22πσ−∞ −∞