14
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
14
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Self-similar
solutions
and
semi-linear
w
pro
osedness
w
with
a
H
v
,
e
holds
equations
w
in
P
Beso
as
v
spaces
concen
F
recen
abrice
will
Planc
e
hon
b
189,
Abstract
1
W
e
e
b
pro
;
v
e
1
that
scaling,
the
e
initial
that
v
>
alue
us,
problem
to
for
time
semi-linear
lo
w
rescaling,
a
Lab
v
Curie,
e
2
equations
Sob
is
exp
w
for
ell-
in
p
(2).
osed
data
in
2
the
1
Beso
n
v
tly
space
w
_
e
B
ill-p
s
alue
p
or
;
should
1
data
2
scaling
(
([10]),
R
h
n
y
),
olev
where
ell-understo
the
on
nonlinearit
for
y
seems
is
whic
of
arian
t
olev
yp
solutions,
e
u
e
p
BP
,
p
with
2
p
The
2
space
N
p
and
to
s
\critical"
p
ell-p
=
norm
n
arian
2
the
2
w
p
for
>
u
1
1
2
s
.
s
This
for
allo
?
ws
n
to
equiv
obtain
p
self-similar
.
solutions
?
as
eects
w
v
ell
(1)
as
b
to
critical
reco
o
v
p
er
]
previous
results).
results
e
under
radially
w
ell-p
eak
to
er
s
smallness
2
assumptions
w
on
generalize
the
here.
data.
Cauc
In
for
tro
in
duction
app
W
e
e
d
are
cus
in
cal
terested
or
in
data).
the
er,
Cauc
teresting
h
for
y
w
problem
in
for
b
the
the
follo
fails
wing
suc
semi-linear
the
w
d'Analyse
a
URA
v
ersit
e
et
equation
place
8
75
<
Cedex
:
n
=
u
p
=
.
homogeneous
u
olev
p
_
;
s
u
is
(
ected
x;
b
0)
the
=
space
u
w
0
osedness
(
its
x
is
)
v
;
t
@
y
t
scaling
u
Indeed,
(
ell-p
x;
holds
0)
initial
=
(
u
0
1
u
(
)
x
H
)
p
;
H
(1)
p
for
([10]),
n
p
p
2.
=
Giv
+3
en
1
our
or
main
alen
in
s
terest,
scaling
2
will
Belo
pla
p
y
,
an
tration
imp
tak
ortan
o
t
er
role:
and
it
is
reads
osed
8
elo
>
some
<
v
>
ab
:
v
u
s
0
([10]
(
[20
x
for
)
t
!
It
u
b
0
noted
;
for
(
symmetric
x
w
)
osedness
=
up
the
2
for
p
p
1
1
u
n
0
but
(
e
x
not
)
suc
u
results
1
Th
(
the
x
h
)
problem
!
(1)
u
data
1
Sob
;
spaces
(
ears
x
b
)
w
=
o
(w
2
fo
p
here
1
lo
+1
in
u
theory
1
global
(
small
x
Ho
)
ev
u
it
(
in
x;
to
t
ok
)
solutions
!
h
u
ould
e
(
v
x;
t
t
y
)
and
=
Sob
theory
2
to
p
vide
1
h
u
as
(
x;
oratoire
t
Num
)
erique,
:
CNRS
(2)
Univ
Let
s
Pierre
p
Marie
b
4
e
Jussieu
suc
187,
h
252
that
aris
s
1initial
data
is
required
T
more
ev
to
small
b
itself,
e
]
homogeneous
w
but
wn
fails
whic
to
p
b
the
e
data
in
space
the
p
correct
,
Sob
fail,
olev
non-linearit
space.
this
This
b
failure
e
w
equiv
as
whic
o
the
v
sp
ercome
their
recen
solutions.
tly
lo
b
wn
y
for
the
Nev
use
the
of
?
suitable
e
functional
only
spaces,
one
mo
h
deled
comp
out
t
of
are
the
y
linear
or
w
ho
a
v
v
u
e
of
op
pro
erator,
last
and
related
whic
denitions
h
([1]
allo
things,
w
e
homogeneous
solutions
Cauc
alues
h
that
y
(w
data
smo
to
p
b
<
e
these
c
the
hosen.
while
This
b
approac
terest
h
Stric
w
exact
as
is
initiated
to
in
e
[5,
more
6]
more
for
t
the
e
Sc
v
hr
es
odinger
u
equation,
1
and
e
subsequen
ab
tly
non-linearit
used
linearit
for
p
(1)
should
in
that
[17
hold
,
,
16
v
,
e
12
suc
].
(
Ho
e
w
arious
ev
spaces.
er,
will
w
self-similar
e
term
lac
section
k
Beso
a
via
go
h
o
among
d
vide
understanding
should
of
that
the
on
functional
w
spaces
er
in
p
tro
,
duced
is
b
admit
y
solutions
these
supp
authors,
data
and
c
kno
p
wn
p
admissible
0
data
none
pro
are
viding
preserv
self-similar
y
solutions
data,
ha
tec
v
y
e
w
to
of
b
probably
e
just
a
estimates
lot
use.
more
of
regular
in
than
an
one
resp
w
metho
ould
will
exp
Essen
ect
deal
if
non-linearities,
one
a
considers
hnicalities,
the
irrelev
correct
the
Sob
ha
olev
do
space
in
where
Th
(1)
restricting
is
non-linearities
w
e
ell-p
1
osed.
where
W
p
e
tegers,
in
ha
tend
w
to
further
bridge
on
the
,
gap
the
b
u
et
dierence
w
p
een
t.
the
e
classical
ev
Sob
exp
olev
results
theory
non-in
and
of
these
generic
recen
b
t
lik
w
.
orks,
to
in
denition
the
suitable
range
F
p
).
>
section,
p
state
?
e
,
results
as
Beso
w
in
e
w
did
with
in
case
the
and
con
of
text
and
of
end
the
us
Sc
results
hr
spaces
odinger
har-
equation
lo
in
details).
[15,
a
13].
will,
in
other
the
pro
same
self-similar
w
It
a
b
y
noted
as
previous
[13
orks
],
self-similar
a
allo
natural
for
extension
w
to
v
_
of
H
>
s
0
p
and
is
(1)
the
kno
homogeneous
to
Beso
global
v
eak)
space
for
_
compactly
B
orted
s
oth
p
([7])
;
p
1
<
2
<
,
?
and
with
unlik
c
e
p
its
.
Sob
ertheless
olev
of
coun
solutions
terpart,
kno
it
to
con
e
tains
regularit
homogeneous
of
functions.
initial
Let
and
us
our
recall
hniques
that
regularit
f
questions
(
elo
x
p
)
remain
2
in
_
and
H
require
s
than
p
the
,
hartz
Z
w
j
will
The
j
form
2
the
s
y
p
(1)
j
relev
j
t
^
with
f
ect
(
the
ds
)
h
j
b
2
used.
d
tially
t
can
X
with
j