J. Math. Pures Appl., 78, 1999, p. 667-700 GENERAL CURVATURE ESTIMATES FOR STABLE H -SURFACES IMMERSED INTO A SPACE FORM Pierre BÉRARD a,1, Laurent HAUSWIRTH b,2 a Institut Fourier, UMR 5582 UJF-CNRS, Université Joseph Fourier, B.P. 74, 38402 St Martin d'Hères Cedex, France b Departamento de Matemática, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, Ceará, Brazil Manuscript received 6 November 1998 ABSTRACT. – In this paper, we give general curvature estimates for constant mean curvature surfaces immersed into a simply-connected 3-dimensional space form. We obtain bounds on the norm of the traceless second fundamental form and on the Gaussian curvature at the center of a relatively compact stable geodesic ball (and, more generally, of a relatively compact geodesic ball with stability operator bounded from below). As a by-product, we show that the notions of weak and strong Morse indices coincide for complete non-compact constant mean curvature surfaces. We also derive a geometric proof of the fact that a complete stable surface with constant mean curvature 1 in the usual hyperbolic space must be a horosphere. Ó Elsevier, Paris Keywords: Constant mean curvature, Curvature estimates, Stability, Morse index RÉSUMÉ. – Dans cet article, on établit une estimée de la courbure pour des surfaces de courbure moyenne constante immergées dans un espace de dimension 3, simplement connexe et de courbure constante.
- morse
- riemannian measure
- curvature estimates
- sobolev inequality
- method repeatedly
- minimal surface
- mean curvature
- constant mean
- courbure constante