Département Mathématiques Informatique

icon

38

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

38

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

XLIM UMR CNRS 6172 Département Mathématiques-Informatique Asymptotics for some vibro-impact problems with a linear dissipation term Alexandre Cabot & Laetitia Paoli Rapport de recherche n° 2006-08 Déposé le 30 juin 2006 Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex Tél. (33) 5 55 45 73 23 - Fax. (33) 5 55 45 73 22

  • qua- dratic term

  • trajectories via penalization techniques

  • called elastic

  • potential function

  • friction force

  • when ?

  • inclusion

  • differential inclusion


Voir icon arrow

Publié par

Nombre de lectures

21

Langue

English

XLIM
UMR CNRS 6172
Département Mathématiques-Informatique
Asymptotics for some vibro-impact problems
with a linear dissipation term
Alexandre Cabot & Laetitia Paoli
Rapport de recherche n° 2006-08 Déposé le 30 juin 2006
Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex Tél. (33) 5 55 45 73 23 - Fax. (33) 5 55 45 73 22 http://www.xlim.fr http://www.unilim.fr/laco
Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex
Tél. (33) 5 55 45 73 23 - Fax. (33) 5 55 45 73 22
http://www.xlim.fr http://www.unilim.fr/laco
ASYMPTOTICS FOR SOME VIBRO-IMPACT PROBLEMS WITH A LINEAR DISSIPATION TERM
ALEXANDRE CABOT AND LAETITIA PAOLI Abstract.Given lofeiwoldisnhtreiantnclidingre e,loentsuislcuo0 (S) x(t) + x˙ (t) +(x(t))30, tR+, where  :RdR∪ {+∞}is a lower semicontinuous convex function such that int (dom )6=. The operator the subdi eren tial denotes of . When  =f+Kwithf:RdRa smooth convex function andKRda closed convex set, inclusion (S) describes the motion of a discrete mechanical system subjected to the perfect unilateral constraintx(t)Kand submitted to the conservative forcerf(x) and the viscous friction force  ˙x. We the de ne notion ofdissipativeand we prove the existence of such solutionssolution to (S) with conservation (resp. loss) of energy at impacts. If >0 and |dom is locally Lipschitz continuous, any dissipative solution to (S) converges, as t+imaot,cynonolgssrtnei.Whntofmpoinimu,xevsehtdeepfo convergence is exponential. Assuming as above that  =f+K, suppose that the boundary ofKis smooth enough and that the normal component of the velocityisreversedandmultipliedbyarestitutioncoecientr[0,1] while the tangential component is conserved wheneverx(t)bd (K). We prove that any dissipative solution to (S) satisfying the previous impact law withr <1 is contained in the boundary ofK time.after a nite case Ther= 1 is also addressedandleadstoaqualitativelydi erentbehavior.
1.Introduction Throughout the paper, the spaceRdis endowed with the Euclidean inner product (,) and the corresponding norm || . Given 0, let us consider the second-order in time di eren tial inclusion (S) x(t) + ˙x(t) +(x(t))30, tR+, where  :RdR∪ {+∞}is a lower semicontinuous convex function such that int(dom)6=. The called the potential function and the operator is function   of  tial for the subdi eren stands every for the sense of convex analysis: in xdom , (x)yRd,(y)(x) + ( , y x). The nonnegative parameter is called the friction parameter. the function When  is smooth, the subdi eren tial with the gradient coincidesr inclusion and (S) becomes (H BF) x(t) + x˙ (t) +r(x(t)) = 0, tR+, 1991.noamitscuSMtaehssi catibjectCla34A60, 34A12, 70F35, 65L20, 37N05, 37N40. Key words and phrases. inclusion, frictionless vibro-impact problems, dissipativeDi eren tial solution, Newton’s impact law, time-stepping scheme, constrained convex optimization. 1
Voir icon more
Alternate Text