64
pages
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
64
pages
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Publié par
Nombre de lectures
31
Publié par
Nombre de lectures
31
LecturesonCommutativeAlgebra
SudhirR.Ghorpade
IndianInstituteofTechnology Bombay
Annual Foundation School - II
(Sponsored by the National Board for Higher Mathematics)
Bhaskaracharya Pratishthana, Pune
and
Department of Mathematics, University of Pune
June 2006©SudhirR.Ghorpade
DepartmentofMathematics
IndianInstituteofTechnologyBombay
Powai,Mumbai400076,India
E-Mail: srg@math.iitb.ac.in
URL:http://www.math.iitb.ac.in/∼srg/
Version1.1,April28,2008
[Original Version(1.0): June1,2006]
2Contents
1 RingsandModules 4
1.1 IdealsandRadicals . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 PolynomialringsandLocalizationofrings . . . . . . . . . . 9
1.3 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 ZariskiTopology . . . . . . . . . . . . . . . . . . . . . . . . . 13
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 NoetherianRings 18
2.1 NoetherianRingsandModules . . . . . . . . . . . . . . . . . 18
2.2 PrimaryDecompositionofIdeals . . . . . . . . . . . . . . . . 20
2.3 ArtinianRingsandModules . . . . . . . . . . . . . . . . . . . 24
2.4 Krull’s PrincipalIdealTheorem . . . . . . . . . . . . . . . . . 28
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3 IntegralExtensions 33
3.1 IntegralExtensions . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 NoetherNormalization . . . . . . . . . . . . . . . . . . . . . . 36
3.3 FinitenessofIntegralClosure . . . . . . . . . . . . . . . . . . 39
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 DedekindDomains 45
4.1 DedekindDomains . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 ExtensionsofPrimes . . . . . . . . . . . . . . . . . . . . . . . 51
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A PrimaryDecompositionofModules 56
A.1 AssociatedPrimesofModules . . . . . . . . . . . . . . . . . . 56
A.2 PrimaryDecompositionofModules . . . . . . . . . . . . . . 59
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
References 63
36
Chapter1
RingsandModules
Inthis chapter,we shall reviewa numberofbasic notionsand resultscon-
cerning rings and modules. First, let us settle the basic terminology and
notationthatweshallusethroughoutthesenotes.
By a ring we mean a commutative ring with identity. Given a ring A,
∗ ×we denote byA the set of all nonzero elements ofA and byA the set of
all (multiplicative) units of A. For setsI,J, we writeI ⊆ J to denote that
I is a subset of J and I ⊂ J to denote that I is a proper subset of J, that
is, I ⊆ J and I = J. We denote the set of nonnegative integers byN and
nforanyn∈N,byN wedenotethesetofalln-tuplesofelementsofN. We
sometimesusetheabbreviation‘iff’ tomean‘ifandonlyif’.
1.1 IdealsandRadicals
Historically, the notion of an ideal arose in an attempt to prove Fermat’s
Last Theorem (see Chapter 4 for more on this). From a formal viewpoint,
an ideal of a ring is analogous to a normal subgroup of a group. More
precisely,anidealofaringAisasubsetI ofAsatisfying(i)I isasubgroup
ofAwith respectto addition,and (ii) whenevera∈ I andx∈ A, we have
ax ∈ I. If A is a ring and I is an ideal of A, then we can construct a new
ring, denoted by A/I and called the residue class ring or the quotient ring
obtained from “moding out” A by I. The elements of A/I are the cosets
x+I :={x+a :a∈I}wherexvariesoverA. Additionandmultiplication
inA/I isdefinedby(x+I)+(y+I)= (x+y)+I and(x+I)(y+I)=xy+I.
ThefactthatI isanidealofAensuresthatthisadditionandmultiplication
is well-defined andA/I is a ring with respect to theseoperations. Passing
toA/I fromAhastheeffectofmakingIthenullelement. Wehaveanatural
surjective homomorphismq : A → A/I given by q(x) := x+I for x∈ A.
Thekernelofq ispreciselytheidealI. Conversely,ifφ :A→B isanyring
homomorphism (that is, a map of rings satisfying φ(x+y) = φ(x)+φ(y)
and φ(xy) = φ(x)φ(y) for every x,y ∈ A), then the kernel of φ (which,
46
by definition, is the set of all a ∈ A such that φ(a) = 0) is an ideal of A;
moreover, if I = kerφ denotes the kernel of φ, then A/I is isomorphic to
the image of φ. In short, residue class ring and homomorphic image are
identical notions. If I is an ideal of a ring A, then there is a one-to-one
correspondencebetweentheidealsofAcontainingI andtheidealsofA/I
′ −1 ′givenbyJ →q(J) =J/I andJ →q (J ).
An easy way to generate examples of ideals is to look at ideals gen-
erated by a bunch of elements of the ring. Given a ring A and elements
a ,...,a ∈A,theset1 n
(a ,...,a ) :={a x +···+a x :x ,...,x ∈A}1 n 1 1 n n 1 n
isclearlyanidealofAanditiscalledtheidealgeneratedby a ,...,a . More1 n
generally, given any ring A and a subsetE ofA, by EA we denote the set
ofall finiteA-linearcombinations ofelementsofE. Clearly,EAisanideal
of A and it is called the ideal generated by E. Ideals generated by a single
elementare called principal. Thus,anidealI ofaringAiscalled aprincipal
ideal if I = (a) for some a ∈ A. By a principal ideal ring or PIR we mean a
ring in which every ideal is principal. An integral domain which is also a
PIRiscalled aprincipal ideal domain orsimply,aPID.
All the basic algebraic operations are applicable to ideals of a ring. Let
AbearingandletI andJ beidealsofA. ThesumofI andJ isdefinedby
I +J :={a+b : a∈ I, b∈ J}, whereas the product ofI and J is defined
P
by IJ := { a b : a ∈ I, b ∈ J}. Clearly, I +J and IJ are ideals of A.i i i i
ItmayberemarkedthattheproductIJ iscloselyrelated,butnotquitethe
same as, the idealI∩J given by theintersectionofI andJ. Forexample,
ifA is a PID,I = (a) andJ = (b), thenIJ = (ab) whereasI∩J = (ℓ) and
I+J = (d),whereℓ = LCM(a,b)andd = GCD(a,b). Analogueofdivision
is given by the colon ideal (I : J) := {a ∈ A : aJ ⊆ I}. Note that (I : J)
ideal of A. If J equals a principal ideal (x), then (I : J) is often denoted
simply by (I : x). For example, if A is a PID, I = (a) and J = (b), then
(I : J) = (a/d), where d = GCD(a,b). We can also consider the radical of√
nanidealI. It is definedby I :={a∈ A : a ∈ I forsomen≥ 1} and it is
readily seento be anidealofA(by Binomial Theorem!). One saysthatI is√
a radical ideal if I = I. Note that the notions of sum and intersections of
ideals extend easily to arbitrary families of ideals, whereas the notion of a
productofidealsextendseasilytofinitefamilies ofideals.
Having defined algebraic operations for ideals, it is natural to see if
the basic notions of arithmetic find an analogue in the setting of ideals. It
turns out that the notion of a prime number has two distinct analogues as
follows. Let A be a ring and I be an ideal of A. We say that I is prime if
I = A and for anya,b∈ A,, wheneverab∈ I, we have a∈ I orb∈ I. We
saythatI ismaximalifforanyidealJ ofAsatisfyingI⊆J,wehaveJ =I
orJ = A. The set of all prime ideals ofA is denotedby Spec(A), whereas
56
6
6
6
thesetofallmaximalidealsofAisdenotedbyMax(A).Itiseasytoseethat
I isaprimeidealifandonlyifA/I isanintegraldomain,andalsothatI is
amaximal idealifandonlyifA/I isafield. Usingthis(oralternatively,by
a simple direct argument), we see that every maximal ideal is prime, that
is,Max(A)⊆ Spec(A).
Examples1.1. (i) IfAisthezeroring,thenSpec(A) =∅ = Max(A).
(ii) IfAisafield,thenSpec(A) ={(0)} = Max(A).
(iii) If A = Z, then Spec(A) = {(0)}∪{(p) : p isaprimenumber}, and
Max(A) ={(p) : p isaprimenumber}.
If A is a ring and P is a nonunit ideal of A, that is, P is an ideal of A
satisfyingP = A, then it is evident thatP is a prime ideal if and only ifP
nsatisfiesthefollowingproperty: if∩ I ⊆P foranyidealsI ,...,I ofA,j 1 nj=1
thenI ⊆ P for somej. It may be interesting to note that there is also thej
following counterpart where instead of an intersectionof ideals contained
inaprimeideal,wehaveanidealcontainedinaunionofprimeideals.
Proposition 1.2 (Prime AvoidanceLemma). Let I, P ,...,P be ideals in a1 n
nringAsuch thatP ,...,P are prime. IfI⊆∪ P ,thenI ⊆P for somej.1 n j jj=1
Proof. Thecasen = 1istrivial. Supposen> 1. Ifthereexistx ∈I\∪ Pi j=i j
for1≤i≤n,thenwehaveacontradictionsincex +x x ...x ∈I\∪ P .1 2 3 n i i
ThusI⊆∪ P ,forsomei. Thecaseofn = 1beingtrivial, theresultnowj=i j
followsusinginductiononn.
Remark1.3. Aneasy alteration of the above proofshows that Proposition
1.2 holdsundertheweakerhypothesisthatI is a subsetofAclosedunder
additionandmultiplication,andP ,...,P areidealsofAsuchthatatleast1 n
n−2 of them are prime. If A contains a field, then Proposition 1.2 can be
proved, by elementary vector space arguments, without assuming any of
theP ’stobeprime.i
Thenotionofcongruencemoduloanintegerhasastraightforwardana-
logueforideals. IfAisaringandI isanidealofA,thenforanyx,y∈Awe
say thatx≡ y(modI) ifx−y ∈ I. More interestingly,Chinese Remainder
Theoremforintegershasthefollowinganalogueforideals.
Proposition 1.4 (Chinese Remainder Theorem). Let I ,I ,...,I be pair-1 2 n
wise comaximal ideals inaringA(i.e.,I +I =Afor alli =j). Then:i j
(i) I I ...I =I ∩I ∩···∩I .1 2 n 1 2 n
(ii) Given any x ,...,x ∈ A, there exists x ∈ A such that x ≡ x (mod I )1 n j j
for1≤j≤n.
66
6
6
(iii) Themapx+I I ···I →(x+I ,...,x+I ) defines an isomorphism of1 2 n 1 n
A/I I ...I onto thedirect sumA/I ⊕A/I ⊕