Documents
Transplantation de cellules fœtales associées ou adhérées à des microsphères libérant du GDNF (Glial cell line-Derived Neurotrophic Factor) : Effets sur la survie, la différenciation et l'intégration du greffon
Laurence Sindji
Documents
Cet ouvrage présente les travaux du groupe d'experts réunis par l'Inserm dans le cadre de la procédure d'expertise collective pour répondre aux questions posées par la Direction générale de la santé DGS concernant la place de la vaccination dans le contrôle de la tuberculose en France Il s'appuie sur les données scientifiques disponibles en date du premier semestre Environ articles et documents ont constitué la base documentaire de cette exper tise
Documents
Etudes supérieures
Cet ouvrage présente les travaux du groupe d'experts réunis par l'Inserm dans le cadre de la procédure d'expertise collective pour répondre aux questions posées par la Direction générale de la santé DGS concernant la place de la vaccination dans le contrôle de la tuberculose en France Il s'appuie sur les données scientifiques disponibles en date du premier semestre Environ articles et documents ont constitué la base documentaire de cette exper tise
220 pages
Français
Documents
Tremblante naturelle des petits ruminants : étude morphologique et immunohistochimique des lésions cérébrales et recherche de marqueurs cellulaires associés
Sébastien Allix
Documents
ACADÉMIE DE ROUEN INSPECTION ACADÉMIQUE DE SEINE MARTIME INSPECTION DE L'ÉDUCATION NATIONALE LE HAVRE EST
François Cheng
Documents scolaires
D'Euclide Lobatchevski pourquoi siècles d'attente Jacques Verdier Résumé Dès qu'Euclide eut énoncé son 5e postulat on a trouvé sa formulation complexe Certains ont voulu le remplacer par un énoncé plus simple ex Par un point extérieur une droite on peut tracer une et une seule parallèle cette droite D'autres ont pensé qu'il devait avoir rang de théorème et donc cherché le démontrer sa négation devait aboutir une contradiction On n'a pas trouvé de contradiction mais cette négation entraînait des propriétés géométriques incroyables contraires au bon sens donc refusées Jusqu'à ce qu'on finisse vingt siècles plus tard par admettre qu'il pouvait exister une géométrie non euclidienne C'est cette histoire que j'ai racontée Besançon sous forme d'un diaporama La géométrie d'Euclide Les Éléments d'Euclide commencent par un certain nombre de définitions comme par exemple Le point est ce dont la partie est nulle Une ligne est une longueur sans largeur Les extrémités d'une surface sont des lignes etc La définition que donne Euclide des parallèles est la suivante Les parallèles sont des droites qui étant situées dans un même plan et étant prolongées l'infini de part et d'autre ne se rencontrent ni d'un côté ni de l'autre Suivent un certain nombre de demandes ou postulats traduits ici en langage contemporain Deux points déterminent une droite unique Une droite peut être indéfiniment prolongée Tous les angles droits sont égaux entre eux etc Le cinquième postulat celui qui nous intéresse ici a une formulation plus complexe Si une droite tombant sur deux droites fait la somme des angles intérieurs du même côté moindre que deux droits ces droites prolongées l'infini se rencontreront du côté où la somme des angles est moindre que deux droits La formulation que l'on utilise maintenant cf résumé n'est pas celle d'Euclide mais celle de Playfair XVIIIe siècle elle lui est équivalente Après ces définitions et ces postulats Euclide enchaîne de façon déductive ses propositions elles sont de deux sortes des constructions pr par exemple ...
Jacques Verdier
Documents scolaires
Collège - Lycée
D'Euclide Lobatchevski pourquoi siècles d'attente Jacques Verdier Résumé Dès qu'Euclide eut énoncé son 5e postulat on a trouvé sa formulation complexe Certains ont voulu le remplacer par un énoncé plus simple ex Par un point extérieur une droite on peut tracer une et une seule parallèle cette droite D'autres ont pensé qu'il devait avoir rang de théorème et donc cherché le démontrer sa négation devait aboutir une contradiction On n'a pas trouvé de contradiction mais cette négation entraînait des propriétés géométriques incroyables contraires au bon sens donc refusées Jusqu'à ce qu'on finisse vingt siècles plus tard par admettre qu'il pouvait exister une géométrie non euclidienne C'est cette histoire que j'ai racontée Besançon sous forme d'un diaporama La géométrie d'Euclide Les Éléments d'Euclide commencent par un certain nombre de définitions comme par exemple Le point est ce dont la partie est nulle Une ligne est une longueur sans largeur Les extrémités d'une surface sont des lignes etc La définition que donne Euclide des parallèles est la suivante Les parallèles sont des droites qui étant situées dans un même plan et étant prolongées l'infini de part et d'autre ne se rencontrent ni d'un côté ni de l'autre Suivent un certain nombre de demandes ou postulats traduits ici en langage contemporain Deux points déterminent une droite unique Une droite peut être indéfiniment prolongée Tous les angles droits sont égaux entre eux etc Le cinquième postulat celui qui nous intéresse ici a une formulation plus complexe Si une droite tombant sur deux droites fait la somme des angles intérieurs du même côté moindre que deux droits ces droites prolongées l'infini se rencontreront du côté où la somme des angles est moindre que deux droits La formulation que l'on utilise maintenant cf résumé n'est pas celle d'Euclide mais celle de Playfair XVIIIe siècle elle lui est équivalente Après ces définitions et ces postulats Euclide enchaîne de façon déductive ses propositions elles sont de deux sortes des constructions pr par exemple ...
Jacques Verdier
4 pages
Français
Documents scolaires
ÉLECTIONS SECTIONS DU COMITE NATIONAL DE LA RECHERCHE SCIENTIFIQUE Résultats proclamés le mardi avril
Claude Verdier
Documents
ETUDE FONCTIONNELLE ET STRUCTURALE DE LA PROTEINE INTEGRASE DES RETROVIRUS ET APPLICATION EN TRANSGENESE
Julie Charmetant
Collection
{{collectionTitle}}
Collection
{{collectionTitle}}
Collection
{{collectionTitle}}
{{productCategoryLabel}}
{{productTitle}}
{{productAuthors}}
{{productCategoryLabel}}
{{productThemeLabel}}
{{productTitle}}
{{productAuthors}}
{{productPages}}
{{productLanguageIsoCode}}