Documents
Chapitre PROBABILITÉS Term S I Lois de probabilités continues Généralités Exemples Dans toutes les situations étudiées jusqu'à présent la variable aléatoire X prend un nombre fini de valeurs On dit alors que la variable aléatoire est Il existe des variables aléatoires non discrètes qui prennent leurs valeurs dans un intervalle de borné ou non Exemples a On tire sur une cible de m de rayon sans jamais la manquer La variable aléatoire qui donne la distance du point d'impact au centre prend toutes les valeurs b La durée de vie d'un transistor le temps d'attente un guichet sont des variables aléatoires c Si X est la variable aléatoire qui mesure la durée de vie d'un transistor savoir si X prend la valeur min par exemple n'a aucun intérêt On verra d'ailleurs que Par contre savoir si X prend des valeurs entre et jours est plus intéressant Variable aléatoire définie par une fonction de densité Définition On dit qu'une variable aléatoire est ou absolument s'il existe une fonction définie sur continue sur sauf peut être en un nombre fini de points positive et telle que quelque soit l'intervalle I de La fonction est appelée de la variable aléatoire X Conséquences Si L'évènement s'écrit aussi L'évènement s'écrit aussi Si La probabilité que X prenne une valeur isolée a est Ainsi Puisque est l'évènement certain et donc
Frederick Martin
Documents
Cours
Chapitre PROBABILITÉS Term S I Lois de probabilités continues Généralités Exemples Dans toutes les situations étudiées jusqu'à présent la variable aléatoire X prend un nombre fini de valeurs On dit alors que la variable aléatoire est Il existe des variables aléatoires non discrètes qui prennent leurs valeurs dans un intervalle de borné ou non Exemples a On tire sur une cible de m de rayon sans jamais la manquer La variable aléatoire qui donne la distance du point d'impact au centre prend toutes les valeurs b La durée de vie d'un transistor le temps d'attente un guichet sont des variables aléatoires c Si X est la variable aléatoire qui mesure la durée de vie d'un transistor savoir si X prend la valeur min par exemple n'a aucun intérêt On verra d'ailleurs que Par contre savoir si X prend des valeurs entre et jours est plus intéressant Variable aléatoire définie par une fonction de densité Définition On dit qu'une variable aléatoire est ou absolument s'il existe une fonction définie sur continue sur sauf peut être en un nombre fini de points positive et telle que quelque soit l'intervalle I de La fonction est appelée de la variable aléatoire X Conséquences Si L'évènement s'écrit aussi L'évènement s'écrit aussi Si La probabilité que X prenne une valeur isolée a est Ainsi Puisque est l'évènement certain et donc
Frederick Martin
7 pages
Français
Collection
{{collectionTitle}}
Collection
{{collectionTitle}}
Collection
{{collectionTitle}}
{{productCategoryLabel}}
{{productTitle}}
{{productAuthors}}
{{productCategoryLabel}}
{{productThemeLabel}}
{{productTitle}}
{{productAuthors}}
{{productPages}}
{{productLanguageIsoCode}}