Documents
Chapitre PROBABILITÉS Term S I Lois de probabilités continues Généralités Exemples Dans toutes les situations étudiées jusqu'à présent la variable aléatoire X prend un nombre fini de valeurs On dit alors que la variable aléatoire est Il existe des variables aléatoires non discrètes qui prennent leurs valeurs dans un intervalle de borné ou non Exemples a On tire sur une cible de m de rayon sans jamais la manquer La variable aléatoire qui donne la distance du point d'impact au centre prend toutes les valeurs b La durée de vie d'un transistor le temps d'attente un guichet sont des variables aléatoires c Si X est la variable aléatoire qui mesure la durée de vie d'un transistor savoir si X prend la valeur min par exemple n'a aucun intérêt On verra d'ailleurs que Par contre savoir si X prend des valeurs entre et jours est plus intéressant Variable aléatoire définie par une fonction de densité Définition On dit qu'une variable aléatoire est ou absolument s'il existe une fonction définie sur continue sur sauf peut être en un nombre fini de points positive et telle que quelque soit l'intervalle I de La fonction est appelée de la variable aléatoire X Conséquences Si L'évènement s'écrit aussi L'évènement s'écrit aussi Si La probabilité que X prenne une valeur isolée a est Ainsi Puisque est l'évènement certain et donc
Frederick Martin
Documents
Cours
Chapitre PROBABILITÉS Term S I Lois de probabilités continues Généralités Exemples Dans toutes les situations étudiées jusqu'à présent la variable aléatoire X prend un nombre fini de valeurs On dit alors que la variable aléatoire est Il existe des variables aléatoires non discrètes qui prennent leurs valeurs dans un intervalle de borné ou non Exemples a On tire sur une cible de m de rayon sans jamais la manquer La variable aléatoire qui donne la distance du point d'impact au centre prend toutes les valeurs b La durée de vie d'un transistor le temps d'attente un guichet sont des variables aléatoires c Si X est la variable aléatoire qui mesure la durée de vie d'un transistor savoir si X prend la valeur min par exemple n'a aucun intérêt On verra d'ailleurs que Par contre savoir si X prend des valeurs entre et jours est plus intéressant Variable aléatoire définie par une fonction de densité Définition On dit qu'une variable aléatoire est ou absolument s'il existe une fonction définie sur continue sur sauf peut être en un nombre fini de points positive et telle que quelque soit l'intervalle I de La fonction est appelée de la variable aléatoire X Conséquences Si L'évènement s'écrit aussi L'évènement s'écrit aussi Si La probabilité que X prenne une valeur isolée a est Ainsi Puisque est l'évènement certain et donc
Frederick Martin
7 pages
Français
Documents
Test du Modèle Standard à basse énergie : mesure précise des rapports d’embranchement de 62 Ga : mesure précise de la durée de vie de 38 Ca
Anissa Bey
Documents
Rupture différée en fatigue statique aux très hautes températures (800° - 1300°) des fils Hi-Nicalon, des composites Hi-Nicalon/Type PyC/SiC et des composites Hi-Nicalon/Type PyC/B4C
Adrien Laforêt
Documents
Techniques de conservation d'énergie pour les réseaux de capteurs sans fil, Energy conservation techniques for wireless sensor networks
Rahim Kacimi
Documents
Prévision de la durée de vie des composites à matrice céramique auto cicatrisante, en fatigue statique, à haute température (= 800°C)
Olivier Loseille
Documents
Introduction Généralités sur les propriétés des matériaux Domaines d'utilisation des modèles Les grandes classes de matériaux Les essais mécaniques
Georges Cailletaud
Collection
{{collectionTitle}}
Collection
{{collectionTitle}}
Collection
{{collectionTitle}}
{{productCategoryLabel}}
{{productTitle}}
{{productAuthors}}
{{productCategoryLabel}}
{{productThemeLabel}}
{{productTitle}}
{{productAuthors}}
{{productPages}}
{{productLanguageIsoCode}}