Time Series Predictive Control in Robotics , livre ebook

icon

232

pages

icon

English

icon

Ebooks

2024

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

232

pages

icon

English

icon

Ebooks

2024

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

This book presents the latest advances for the frontier cross disciplinary field of robotics, intelligent control and learning. Seven chapters are provided to cover the key common theories and technologies of robots, including the robot mapping and navigation, robot recharging and smart power management, robot arm manipulation, unmanned vehicle control, intelligent manufacturing systems, etc. The book proposes a unique new perspective using time series prediction to control robots. Especially with the fast increasing of various data in robotics, this new robot control mode using time series prediction has become very important. The book provides the complete cases for the most popular application scenes of robot predictive control. By this first monograph on the topic of robot time series predictive control in the world, author provides important references for the engineers, scientists and students in the field of robotics and artificial intelligence.

Preface..................................................... III

Abbreviations................................................ V

CHAPTER 1

Introduction................................................. 1

1.1Robotics and Control Technology ............................ 1

1.1.1 Robotics ......................................... 1

1.1.2 Robotics Control Technology .......................... 4

1.2 Time Series Forecasting in Robotics Control .................... 5

1.2.1 Time Series Forecasting Objectives...................... 5

1.2.2 Time Series Forecasting Methods ....................... 8

1.3 Predictive Control in Robotics .............................. 10

1.3.1 Uncertainty Problems in Predictive Control of Robotics ...... 10

1.3.2 Model Predictive Control ............................. 13

1.3.3 Significance and Purpose of Research .................... 14

1.4 Scopeof This Book ....................................... 15

References.................................................. 18

CHAPTER 2

Robot Navigation Position Time Series Predictive Control .............. 23

2.1 Introduction ............................................ 23

2.2 Robot Navigation Position Time Series Measurement ............. 24

2.3 Robot Navigation Position Time Series Uncertainty Analysis ....... 25

2.4 Robot Navigation Position Time Series Statistical Forecasting Method................................................ 25

2.4.1 ARIMA Forecasting Algorithm ........................ 26

2.4.2 ARIMA-GARCH Forecasting Algorithm ................. 30

2.5 Robot Navigation Position Time Series Intelligent Forecasting Method................................................ 35

2.5.1 RBF Neural Network Forecasting Algorithm .............. 35

2.5.2 Elman Neural Network Forecasting Algorithm ............. 38

2.5.3 Extreme Learning Machine Forecasting Algorithm .......... 41

2.6 Robot Navigation Position Time Series Deep Learning Forecasting Method................................................ 44

2.6.1 LSTM Deep Neural Network Forecasting Algorithm ......... 45

2.6.2 ESN Deep Neural Network Forecasting Algorithm .......... 48

2.7 Comparative Analysis of Forecasting Performance ................ 51

2.8 Robot Anti-Collision Monitoring and Control Based on Navigation Position Forecasting ...................................... 52

2.9 Conclusions............................................. 53

References.................................................. 53

CHAPTER 3

Mobile Robot Power Time Series Predictive Control ................... 57

3.1Introduction ............................................ 57

3.2 Mobile Robot Power Time Series Measurement .................. 58

3.3 Mobile Robot Power Time Series Uncertainty Analysis ............ 59

3.4 Mobile Robot Power Time Series Statistical Forecasting Method ..... 60

3.4.1Experimental Design ................................ 60

3.4.2Modeling Steps .................................... 61

3.4.3Forecasting Results ................................. 63

3.5 Mobile Robot Power Time Series Intelligent Forecasting Method ..... 64

3.5.1Experimental Design ................................ 65

3.5.2Modeling Steps .................................... 68

3.5.3Forecasting Results ................................. 70

3.6 Mobile Robot Power Time Series Deep Learning Forecasting Method . 71

3.6.1Experimental Design ................................ 71

3.6.2Modeling Steps .................................... 73

3.6.3Forecasting Results ................................. 76

3.7Comparative Analysis of Forecasting Performance ................ 78

3.7.1Analysis of Statistical Methods ........................ 78

3.7.2Analysis of Intelligent Methods ........................ 78

3.7.3Analysis of Deep Learning Methods ..................... 79

3.8 Mobile Robot Delivery Process Control Based on Power Forecasting . . 80

3.9Conclusions............................................. 80

References.................................................. 81

CHAPTER 4

Robot Arm Time Series Predictive Control .......................... 83

4.1Introduction ............................................ 83

4.2 Robot Arm Time Series Measurement ......................... 84

4.3 Robot Arm Time Series Uncertainty Analysis ................... 85

4.4 Robot Arm Time Series Statistical Forecasting Method ............ 85

4.4.1Pandit–Wu Forecasting Algorithm ...................... 86

4.4.2KF-ARMA Forecasting Algorithm ...................... 88

4.5 Robot Arm Time Series Intelligent Forecasting Method............ 93

4.5.1 RELM Forecasting Algorithm ......................... 93

4.5.2XG Boost Forecasting Algorithm........................ 97

4.5.3 GRNN Forecasting Algorithm ......................... 101

4.6 Robot Arm Time-Series Deep Learning Forecasting Method ........ 104

4.6.1Autoencoder Deep Neural Network Forecasting Algorithm .... 104

4.6.2 Deep Belief Network Forecasting Algorithm ............... 107

4.7Comparative Analysis of Forecasting Performance ................ 110

4.7.1Analysis of Statistical Methods ........................ 110

4.7.2Analysis of Intelligent Methods ........................ 111

4.7.3Analysis of Deep Learning Methods ..................... 111

4.8 Robot Arm Positioning Control Based on Arm Forecasting ......... 112

4.9 Conclusions............................................. 113

References.................................................. 113

CHAPTER 5

Unmanned Vehicle Time Series Predictive Control .................... 115

5.1Introduction ............................................ 115

5.2Unmanned Vehicle Time Series Measurement ................... 118

5.3Unmanned Vehicle Time Series Uncertainty Analysis ............. 119

5.4Unmanned Vehicle Time Series Statistical Forecasting Method ...... 119

5.4.1Kalman Filter Forecasting Algorithm .................... 119

5.4.2 Fuzzy Time Series Forecasting Algorithm ................. 122

5.5 Unmanned Vehicle Time Series Intelligent Forecasting Method ...... 124

5.5.1 Elman Neural Network Forecasting Algorithm ............. 125

5.5.2 NAR Neural Network Forecasting Algorithm .............. 128

5.5.3 ANFIS Neural Network Forecasting Algorithm ............. 130

5.6 Unmanned Vehicle Time Series Deep Learning Forecasting Method ... 134

5.6.1 RNNDeep Neural Network Forecasting Algorithm .......... 134

5.6.2 LSTM Deep Neural Network Forecasting Algorithm ......... 137

5.6.3 GRU Deep Neural Network Forecasting Algorithm .......... 139

5.7Comparative Analysis of Forecasting Performance ................ 141

5.7.1Analysis of Statistical Methods ........................ 141

5.7.2Analysis of Intelligent Methods ........................ 142

5.7.3Analysis of Deep Learning Methods ..................... 142

5.8Unmanned Vehicle Navigation Control Based on Multi-Source Position Time Series Fusion ................................ 142

5.8.1Unmanned Vehicle Fusion Positioning ................... 142

5.8.2Unmanned Vehicle Navigation Control ................... 144

5.9Unmanned Vehicle Charging Control Based on Multi-Source Power Time Series Fusion ....................................... 145

5.10Conclusions............................................. 146

References.................................................. 147

CHAPTER 6

Wearable Assistive Robot Time Series Predictive Control ............... 151

6.1 Introduction ............................................ 151

6.2 Wearable Assistive Robot Time Series Measurement .............. 152

6.3 Wearable Assistive Robot Time Series Uncertainty Analysis ........ 154

6.4 Wearable Assistive Robot Time Series Statistical Forecasting Method . 155

6.4.1 Experimental Design ................................ 155

6.4.2 Modeling Step ..................................... 160

6.4.3 Forecasting Results ................................. 162

6.5 Wearable Assistive Robot Time Series Intelligent Forecasting Method . 165

6.5.1 Experimental Design ................................ 165

6.5.2 Modeling Step ..................................... 167

6.5.3 Forecasting Results ................................. 171

6.6Wearable Assistive Robot Time-Series Deep Learning Forecasting Method................................................ 174

6.6.1Experimental Design ................................ 174

6.6.2Modeling Step ..................................... 176

6.6.3Forecasting Results ................................. 179

6.7Comparative Analysis of Forecasting Performance ................ 180

6.8Wearable Assistive Robot Motion Control Based on Forecasting ..... 181

6.9Conclusions............................................. 182

References.................................................. 183

CHAPTER 7

Intelligent Manufacturing Performance Prediction and Application ........ 187

7.1Introduction ............................................ 187

7.2 Data Acquisition ......................................... 189

7.2.1Data-Driven Method ................................ 190

7.2.2Model-Driven Method ............................... 190

7.3Prediction Modeling ...................................... 193

7.3.1Regression Algorithms ............................... 193

7.3.2Artificial Neural Network (ANN) ....................... 199

7.3.3Comparison Analysis ................................ 202

7.4Application ............................................. 204

7.4.1System Configuration ................................ 204

7.4.2 The Other Application ............................... 216

7.5Conclusions............................................. 217

References.................................................. 218

Voir icon arrow

Publié par

Date de parution

09 mai 2024

Nombre de lectures

1

EAN13

9782759835102

Langue

English

Poids de l'ouvrage

24 Mo

A Catalogue of Asian Mosses
Category

Ebooks

A Catalogue of Asian Mosses

Yu Jia, Qiang He

A Catalogue of Asian Mosses Alternate Text
Category

Ebooks

Autres

A Catalogue of Asian Mosses

Yu Jia, Qiang He

Book

728 pages

Flag

English

An Introduction to Linear Algebra
Category

Ebooks

An Introduction to Linear Algebra

Liu Xuan, Zhi ZHAO, Wei-Hui LIU, Xiao-Qing JIN

An Introduction to Linear Algebra Alternate Text
Category

Ebooks

Sciences formelles

An Introduction to Linear Algebra

Liu Xuan, Zhi ZHAO, Wei-Hui LIU, Xiao-Qing JIN

Book

238 pages

Flag

English

Introduction to Abstract Algebra
Category

Ebooks

Introduction to Abstract Algebra

Libin Li, Kaiming Zhao

Introduction to Abstract Algebra Alternate Text
Category

Ebooks

Sciences formelles

Introduction to Abstract Algebra

Libin Li, Kaiming Zhao

Book

186 pages

Flag

English

Managerial Challenges of Industry 4.0
Category

Ebooks

Managerial Challenges of Industry 4.0

Carolina MACHADO and J.Paulo DAVIM (Edited by)

Managerial Challenges of Industry 4.0 Alternate Text
Category

Ebooks

Gestion et management

Managerial Challenges of Industry 4.0

Carolina MACHADO and J.Paulo DAVIM (Edited by)

Book

158 pages

Flag

English

Atomic Clusters
Category

Ebooks

Atomic Clusters

Michel Broyer, Patrice Mélinon

Atomic Clusters Alternate Text
Category

Ebooks

Sciences formelles

Atomic Clusters

Michel Broyer, Patrice Mélinon

Book

416 pages

Flag

English

Sign Pattern for Generalized Inverses
Category

Ebooks

Sign Pattern for Generalized Inverses

Changjiang BU, Lizhu SUN, Yimin Wei

Sign Pattern for Generalized Inverses Alternate Text
Category

Ebooks

Sciences formelles

Sign Pattern for Generalized Inverses

Changjiang BU, Lizhu SUN, Yimin Wei

Book

234 pages

Flag

English

The planetary ocean
Category

Ebooks

The planetary ocean

Michèle Fieux, Ferris Webster

The planetary ocean Alternate Text
Category

Ebooks

Science de la nature

The planetary ocean

Michèle Fieux, Ferris Webster

Book

580 pages

Flag

English

A Monograph of the genus Microtoena (Lamiaceae)
Category

Ebooks

A Monograph of the genus Microtoena (Lamiaceae)

Wang Qiang

A Monograph of the genus Microtoena (Lamiaceae) Alternate Text
Category

Ebooks

Science de la nature

A Monograph of the genus Microtoena (Lamiaceae)

Wang Qiang

Book

150 pages

Flag

English

Global Well-Posedness for Some Fluid Models
Category

Ebooks

Global Well-Posedness for Some Fluid Models

Qin Yuming, Jianlin ZHANG

Global Well-Posedness for Some Fluid Models Alternate Text
Category

Ebooks

Sciences formelles

Global Well-Posedness for Some Fluid Models

Qin Yuming, Jianlin ZHANG

Book

294 pages

Flag

English

Car following Dynamics: Experiments and Models
Category

Ebooks

Car following Dynamics: Experiments and Models

Junfang TIAN, Jiang Rui

Car following Dynamics: Experiments and Models Alternate Text
Category

Ebooks

Techniques

Car following Dynamics: Experiments and Models

Junfang TIAN, Jiang Rui

Book

160 pages

Flag

English

Checklist of Vascular Plants of North Asia
Category

Ebooks

Checklist of Vascular Plants of North Asia

Jianhua XUE, Victor V. Chepinoga, Keping Ma

Checklist of Vascular Plants of North Asia Alternate Text
Category

Ebooks

Science de la nature

Checklist of Vascular Plants of North Asia

Jianhua XUE, Victor V. Chepinoga, Keping Ma

Book

416 pages

Flag

English

AMETIS
Category

Ebooks

AMETIS

Nihed CHAÂBANE, Frédéric SCHUSTER

AMETIS Alternate Text
Category

Ebooks

Sciences formelles

AMETIS

Nihed CHAÂBANE, Frédéric SCHUSTER

Book

382 pages

Flag

English

The Exoplanets Revolution
Category

Ebooks

The Exoplanets Revolution

Lequeux James, Thérèse Encrenaz, Casoli Fabienne

The Exoplanets Revolution Alternate Text
Category

Ebooks

Sciences formelles

The Exoplanets Revolution

Lequeux James, Thérèse Encrenaz, Casoli Fabienne

Book

215 pages

Flag

English

Ultra-cold atoms, ions, molecules and quantum technologies
Category

Ebooks

Ultra-cold atoms, ions, molecules and quantum technologies

Héléne Perrin, Robin Kaiser, Michèle Leduc

Ultra-cold atoms, ions, molecules and quantum technologies Alternate Text
Category

Ebooks

Sciences formelles

Ultra-cold atoms, ions, molecules and quantum technologies

Héléne Perrin, Robin Kaiser, Michèle Leduc

Book

194 pages

Flag

English

Taxonomy and Systematics of the Genus Macromitrium (Orthotrichaceae, Moss) in the World
Category

Ebooks

Taxonomy and Systematics of the Genus Macromitrium (Orthotrichaceae, Moss) in the World

Dan-Dan LI, Yu Jing, Shui-Liang GUO

Taxonomy and Systematics of the Genus Macromitrium (Orthotrichaceae, Moss) in the World Alternate Text
Category

Ebooks

Science de la nature

Taxonomy and Systematics of the Genus Macromitrium (Orthotrichaceae, Moss) in the World

Dan-Dan LI, Yu Jing, Shui-Liang GUO

Book

472 pages

Flag

English

Alternate Text