Théorie de Morse et homologie de Floer , livre ebook

icon

524

pages

icon

Français

icon

Ebooks

2010

Écrit par

Publié par

icon jeton

Vous pourrez modifier la taille du texte de cet ouvrage

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

524

pages

icon

Français

icon

Ebooks

2010

icon jeton

Vous pourrez modifier la taille du texte de cet ouvrage

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Cet ouvrage est une introduction aux méthodes modernes de la topologie symplectique. Il est consacré à un problème issu de la mécanique classique, la « conjecture d’Arnold », qui propose de minimiser le nombre de trajectoires périodiques de certains systèmes hamiltoniens par un invariant qui ne dépend que de la topologie de la variété symplectique dans laquelle évolue ce système.

La première partie expose la « théorie de Morse », outil indispensable de la topologie différentielle contemporaine. Elle introduit le « complexe de Morse » et aboutit aux inégalités de Morse. Cette théorie, maintenant classique, est présentée de manière détaillée car elle sert de guide pour la seconde partie, consacrée à l’« homologie de Floer », qui en est un analogue en dimension infinie. Les objets de l’étude sont alors plus compliqués et nécessitent l’introduction de méthodes d’analyse plus sophistiquées. Elles sont expliquées en détail dans cette partie. Enfin, l’ouvrage contient en appendice la présentation d’un certain nombre de résultats nécessaires à la lecture du livre dans les trois principaux domaines abordés – géométrie différentielle, topologie algébrique et analyse – auxquels le lecteur pourra se référer si besoin.

L’ouvrage est issu d’un cours de M2 donné à l’université de Strasbourg. Le texte, abondamment illustré, contient de nombreux exercices.

 

 


Voir icon arrow

Publié par

Date de parution

01 août 2010

Nombre de lectures

1

EAN13

9782759829989

Langue

Français

Poids de l'ouvrage

2 Mo

Michèle Audin et Mihai Damian
Théorie de Morse et homologie de Floer
Copyright

© EDP Sciences, Les Ulis, 2010
ISBN papier : 9782759805181 ISBN numérique : 9782759829989
Composition numérique : 2023
http://publications.edpsciences.org/
Cette uvre est protégée par le droit d auteur et strictement réservée à l usage privé du client. Toute reproduction ou diffusion au profit de tiers, à titre gratuit ou onéreux, de tout ou partie de cette uvre est strictement interdite et constitue une contrefaçon prévue par les articles L 335-2 et suivants du Code de la propriété intellectuelle. L éditeur se réserve le droit de poursuivre toute atteinte à ses droits de propriété intellectuelle devant les juridictions civiles ou pénales.
Présentation

Cet ouvrage est une introduction aux méthodes modernes de la topologie symplectique. Il est consacré à un problème issu de la mécanique classique, la « conjecture d’Arnold », qui propose de minimiser le nombre de trajectoires périodiques de certains systèmes hamiltoniens par un invariant qui ne dépend que de la topologie de la variété symplectique dans laquelle évolue ce système. La première partie expose la « théorie de Morse », outil indispensable de la topologie différentielle contemporaine. Elle introduit le « complexe de Morse » et aboutit aux inégalités de Morse. Cette théorie, maintenant classique, est présentée de manière détaillée car elle sert de guide pour la seconde partie, consacrée à l’« homologie de Floer », qui en est un analogue en dimension infinie. Les objets de l’étude sont alors plus compliqués et nécessitent l’introduction de méthodes d’analyse plus sophistiquées. Elles sont expliquées en détail dans cette partie. Enfin, l’ouvrage contient en appendice la présentation d’un certain nombre de résultats nécessaires à la lecture du livre dans les trois principaux domaines abordés – géométrie différentielle, topologie algébrique et analyse – auxquels le lecteur pourra se référer si besoin. L’ouvrage est issu d’un cours de M2 donné à l’université de Strasbourg. Le texte, abondamment illustré, contient de nombreux exercices.
 
 
Les auteurs

Michèle Audin

Professeur à l’Université de Strasbourg, est spécialiste de géométrie symplectique et auteur de plusieurs ouvrages consacrés à ce sujet.
Mihai Damian

Maître de conférences à l’Université de Strasbourg, est spécialiste de géométrie et topologie symplectiques, et en particulier des méthodes développées dans ce livre, auxquelles il a consacré plusieurs articles de recherche.
Table des matières Préface Partie I. Théorie de Morse Introduction de la première partie Chapitre 1. Fonctions de Morse 1.1. Définition des fonctions de Morse 1.2. Existence et multitude des fonctions de Morse 1.3. Le lemme de Morse, indice d un point critique 1.3.b. Exemples de points critiques. 1.4. Exemples de fonctions de Morse Chapitre 2. Pseudo-gradients 2.1. Gradients, pseudo-gradients et cartes de Morse 2.2. La condition de Smale 2.3. Appendice : classification des variétés compactes de dimension 1 Exercices Chapitre 3. Le complexe des points critiques 3.1. Définition du complexe 3.2. Espace des liaisons entre deux points critiques, ou des « trajectoires brisées » 3.3. Orientations, complexe sur Z 3.4. L homologie du complexe ne dépend ni de la fonction ni du champ de vecteurs 3.5. Cobordismes Exercices Chapitre 4. Homologie de Morse, applications 4.1. Homologie 4.2. La formule de Künneth 4.3. La « dualité de Poincaré » 4.4. Caractéristique d Euler, polynôme de Poincaré 4.5. Homologie et connexité 4.6. Fonctorialité de l homologie de Morse 4.7. Suite exacte longue 4.8. Applications Exercices Partie II. La conjecture d Arnold, théorie de Floer Introduction de la deuxième partie Chapitre 5. Ce qu il faut savoir en géométrie symplectique Chapitre 6. La conjecture d Arnold et l équation de Floer Chapitre 7. Géométrie du groupe symplectique, indice de Maslov 7.1. Vers la définition de l indice 7.2. L indice de Maslov d un chemin 7.3. Appendice : construction et propriétés de Chapitre 8. Linéarisation et transversalité 8.1. Les résultats : énoncés 8.2. La variété de Banach P 1 ,p ( x, y ) 8.3. L espace des perturbations de H 8.4. Linéarisation de l équation de Floer : calcul de la différentielle de F 8.5. La transversalité 8.6. Les solutions de Floer sont « injectives quelque part » 8.7. La propriété de Fredholm 8.8. Le calcul de l indice de L 8.9. La décroissance exponentielle Chapitre 9. Homologie de Floer : étude des espaces de trajectoires 9.1. Les espaces de trajectoires 9.2. Trajectoires brisées, recollement : énoncés 9.3. Pré-recollement 9.4. Construction de 9.5. Propriétés de : est une immersion 9.6. Propriétés de : unicité du recollement Chapitre 10. De Floer à Morse 10.1. Les énoncés 10.2. La linéarisation du flot d un champ de pseudo-gradient, démonstration du théorème 10.1.3 10.3. Démonstration du théorème (de régularité) 10.1.2 10.4. Les trajectoires de Morse et de Floer coïncident Chapitre 11. Homologie de Floer : invariance 11.1. Le morphisme 11.2. Démonstration du théorème 11.1.16 11.3. Invariance de : démonstration de la proposition 11.2.8 11.4. Démonstration du théorème 11.3.14 11.5. Fin de la preuve de l invariance de l homologie de Floer : démonstration de la proposition 11.2.9 11.6. Conclusion Chapitre 12. La régularité elliptique de l opérateur de Floer 12.1. La régularité elliptique : pourquoi et comment ? 12.2. Démonstration du lemme 8.7.2 12.3. Démonstration du théorème 12.1.2 12.4. Régularité elliptique de l opérateur de Floer (non linéaire), démonstrations Chapitre 13. Les lemmes sur la dérivée seconde de l opérateur de Floer et autres technicités 13.1. Versions de l opérateur de Floer 13.2. Les deux lemmes sur dF 13.3. L opérateur F 13.4. Démonstration des deux lemmes : le premier 13.5. Démonstration des deux lemmes : le deuxième 13.6. Encore un lemme technique 13.7. Deux autres lemmes techniques 13.8. Variantes à paramètre(s) des lemmes sur la dérivée seconde Exercices de la deuxième partie Exercices sur le chapitre 5 Exercices sur le chapitre 6 Exercices sur le chapitre 7 Exercices sur le chapitre 8 Exercices sur le chapitre 10 Exercices sur le chapitre 11 Appendices : ce qu il faut savoir pour lire ce livre Chapitre 14. Un peu de géométrie différentielle 14.1. Les variétés et les sous-variétés 14.2. Points critiques, valeurs critiques et théorème de Sard 14.3. Transversalité 14.4. Champs de vecteurs comme équations différentielles 14.5. Métriques riemanniennes, exponentielle Chapitre 15. Un peu de topologie algébrique 15.1. Un peu d algèbre homologique 15.2. Classes de Chern Chapitre 16. Un peu d analyse 16.1. Le théorème d Ascoli 16.2. Théorie de Fredholm 16.3. Espaces de distributions, solutions faibles 16.4. Espaces de Sobolev sur R n 16.5. L équation de Cauchy-Riemann Bibliographie Index des notations Index terminologique A B C D E F G H I J K L M N O P Q R S T U V W Z
Préface

L homologie de Floer est aujourd hui une technique indispensable de la topologie symplectique. Inspirée d idées de Witten et de Gromov dans les années 1980, elle a permis depuis de résoudre de nombreux problèmes difficiles, et elle continue de le faire.
Ce livre est consacré à la solution d un de ces problèmes, une célèbre conjecture due à Arnold, qui propose de minimiser le nombre de trajectoires périodiques d un système hamiltonien par un invariant qui ne dépend que de la topologie de la variété symplectique sur laquelle évolue ce système. Cette minoration ressemble beaucoup aux célèbres inégalités de Morse, qui minorent le nombre de points critiques d une fonction. Une ressemblance qui n a rien de fortuit : l homologie de Floer est un analogue (en dimension infinie) de l homologie de la variété telle qu elle est calculée par le complexe de Morse « à la Witten » : le rôle principal est tenu dans les deux cas par les espaces de modules de trajectoires joignant les points critiques (d une fonction pour Morse, d une fonctionnelle pour Floer).
En 2004-2005, nous avions proposé un cours, deux cours, sur ces notions. Nous avons commencé par la théorie de Morse, bien sûr, il y avait des étudiants, nous aimions beaucoup le livre de Milnor dans lequel nous avions l un et l autre appris l existence, la multitude et surtout l utilité des fonctions de Morse, nous avons donc commencé à rédiger des notes pour les étudiants, c était assez facile
Et puis, c est devenu plus difficile - il n existait aucun livre donnant le point de vue plus moderne sur l homologie de Morse, avec la construction et les propriétés d invariance du complexe de Morse défini à l aide des espaces de trajectoires, qui nous permettrait d aller vers la construction du complexe de Floer - copier n était plus possible, il nous a donc fallu là un peu d imagination.
La première partie du cours terminée à la satisfaction des auditeurs, nous avons abordé l homologie de Floer. Les objets et les techniques, que nous, topologues et géomètres, utilisons tous les jours, de l homologie de Morse, se sont transfigurés en objets et techniques de l homologie de Floer. Le charme, un des charmes, et la force, de cette théorie, résident en ceci qu elle utilise, outre la géométrie et la topologie, beaucoup d analyse, des opérateurs de Fredholm et des espaces de Sobolev. Exposer ceci à d authentiques étudiants n est pas une tâche très facile, même en s y mettant à deux. C est pourquoi nous avons décidé de persister à rédiger des notes de cours.
Si de nombreux travaux de recherche ont utilisé et utilisent toujours ces techniques, si de nombreux étudiants en ont aujourd hui besoin, il faut bien dire qu il n y avait pas, sur ce sujet-là non plus, de livre raisonnablement auto-suffisant.
Cinq années se sont écoulées, au cours desquelles nous avons affiné, corrigé, allongé, précisé, majoré, minoré, égalé, comparé, énoncé et démontré soixante-treize théorèmes, cent vingt et une propositions et cent six lemmes, dessiné quatre-vingt-dix-huit figures (et posé un certain nom

Voir icon more
Géométrie algébrique
Category

Ebooks

Géométrie algébrique

Daniel Perrin

Géométrie algébrique Alternate Text
Category

Ebooks

Sciences formelles

Géométrie algébrique

Daniel Perrin

Book

318 pages

Flag

Français

Processus d interaction entre photons et atomes
Category

Ebooks

Processus d'interaction entre photons et atomes

Claude Cohen-Tannoudji, Jacques Dupont-Roc, Gilbert Grynberg

Processus d interaction entre photons et atomes Alternate Text
Category

Ebooks

Sciences formelles

Processus d'interaction entre photons et atomes

Claude Cohen-Tannoudji, Jacques Dupont-Roc, Gilbert Grynberg

Book

648 pages

Flag

Français

Éléments de chimie quantique
Category

Ebooks

Éléments de chimie quantique

Jean-Louis Rivail

Éléments de chimie quantique Alternate Text
Category

Ebooks

Sciences formelles

Éléments de chimie quantique

Jean-Louis Rivail

Book

461 pages

Flag

Français

Analyse et équations aux dérivées partielles
Category

Ebooks

Analyse et équations aux dérivées partielles

Thomas Alazard

Analyse et équations aux dérivées partielles Alternate Text
Category

Ebooks

Sciences formelles

Analyse et équations aux dérivées partielles

Thomas Alazard

Book

448 pages

Flag

Français

Aspects de la chimie des composés macrocycliques
Category

Ebooks

Aspects de la chimie des composés macrocycliques

Bernard Dietrich, Paulette Viout, Jean-Marie Lehn

Aspects de la chimie des composés macrocycliques Alternate Text
Category

Ebooks

Sciences formelles

Aspects de la chimie des composés macrocycliques

Bernard Dietrich, Paulette Viout, Jean-Marie Lehn

Book

422 pages

Flag

Français

Physique quantique
Category

Ebooks

Physique quantique

Michel Le Bellac

Physique quantique Alternate Text
Category

Ebooks

Sciences formelles

Physique quantique

Michel Le Bellac

Book

373 pages

Flag

Français

Les agrégats
Category

Ebooks

Les agrégats

Patrice Mélinon, Michel Broyer

Les agrégats Alternate Text
Category

Ebooks

Sciences formelles

Les agrégats

Patrice Mélinon, Michel Broyer

Book

377 pages

Flag

Français

La diffraction des rayons X par les cristaux liquides  - Tome 2
Category

Ebooks

La diffraction des rayons X par les cristaux liquides - Tome 2

Anne-Marie Levelut, Patrick Davidson, Alan Braslau

La diffraction des rayons X par les cristaux liquides  - Tome 2 Alternate Text
Category

Ebooks

Sciences formelles

La diffraction des rayons X par les cristaux liquides - Tome 2

Anne-Marie Levelut, Patrick Davidson, Alan Braslau

Book

574 pages

Flag

Français

Plasmas créés par laser
Category

Ebooks

Plasmas créés par laser

Patrick MORA

Plasmas créés par laser Alternate Text
Category

Ebooks

Sciences formelles

Plasmas créés par laser

Patrick MORA

Book

230 pages

Flag

Français

Le temps dans la géolocalisation par satellites
Category

Ebooks

Le temps dans la géolocalisation par satellites

Pierre Spagnou, Sébastien Trilles

Le temps dans la géolocalisation par satellites Alternate Text
Category

Ebooks

Sciences formelles

Le temps dans la géolocalisation par satellites

Pierre Spagnou, Sébastien Trilles

Book

383 pages

Flag

Français

Groupes quantiques
Category

Ebooks

Groupes quantiques

Alain Guichardet

Groupes quantiques Alternate Text
Category

Ebooks

Sciences formelles

Groupes quantiques

Alain Guichardet

Book

163 pages

Flag

Français

Instabilités hydrodynamiques
Category

Ebooks

Instabilités hydrodynamiques

François Charru

Instabilités hydrodynamiques Alternate Text
Category

Ebooks

Techniques

Instabilités hydrodynamiques

François Charru

Book

351 pages

Flag

Français

L observation en astrophysique
Category

Ebooks

L'observation en astrophysique

François Lebrun, Pierre Léna, François Mignard, Didier Pelat, Daniel Rouan

L observation en astrophysique Alternate Text
Category

Ebooks

Sciences formelles

L'observation en astrophysique

François Lebrun, Pierre Léna, François Mignard, Didier Pelat, Daniel Rouan

Book

567 pages

Flag

Français

Relativité restreinte
Category

Ebooks

Relativité restreinte

Eric Gourgoulhon

Relativité restreinte Alternate Text
Category

Ebooks

Sciences formelles

Relativité restreinte

Eric Gourgoulhon

Book

749 pages

Flag

Français

Symétries continues
Category

Ebooks

Symétries continues

Franck Laloe

Symétries continues Alternate Text
Category

Ebooks

Sciences formelles

Symétries continues

Franck Laloe

Book

451 pages

Flag

Français

Alternate Text