Pensées sur l'interprétation de la nature , livre ebook

icon

30

pages

icon

Français

icon

Ebooks

Écrit par

Publié par

icon jeton

Vous pourrez modifier la taille du texte de cet ouvrage

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

30

pages

icon

Français

icon

Ebooks

icon jeton

Vous pourrez modifier la taille du texte de cet ouvrage

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Extrait de la notice : "On a dit que Diderot avait collaboré activement au premier ouvrage d'Helvétius : "De l'Esprit". Il est difficile et de nier cette collaboration et de la prouver. Il a sans doute fourni des pages. Il a certainement donné le point de départ : "Le paradoxe", comme il l'appelle, de la sensibilité afférente à la matière en général ; mais il a dû laisser Helvétius employer ces matériaux à sa façon (...)"
Voir icon arrow

Publié par

Nombre de lectures

19

EAN13

9782335001280

Langue

Français

EAN : 9782335001280

 
©Ligaran 2015

Aux jeunes gens qui se disposent à l'étude de la philosophie naturelle
Jeune homme, prends et lis. Si tu peux aller jusqu’à la fin de cet ouvrage, tu ne seras pas incapable d’en entendre un meilleur. Comme je me suis moins proposé de t’instruire que de t’exercer, il m’importe peu que tu adoptes mes idées ou que tu les rejettes, pourvu qu’elles emploient toute ton attention. Un plus habile t’apprendra à connaître les forces de la nature ; il me suffira de t’avoir fait essayer les tiennes. Adieu.
P.S. Encore un mot, et je te laisse. Aie toujours présent à l’esprit que la nature n’est pas Dieu ; qu’un homme n’est pas une machine ; qu’une hypothèse n’est pas un fait : et sois assuré que tu ne m’auras point compris, partout où tu croiras apercevoir quelque chose de contraire à ces principes.
De l’interprétation de la nature

« Quæ sunt in luce tuemur E tenebris. »

LUCRET. De Rerum natura, lib. VI.

I
C’est de la nature que je vais écrire. Je laisserai les pensées se succéder sous ma plume, dans l’ordre même selon lequel les objets se sont offerts à ma réflexion ; parce qu’elles n’en représenteront que mieux les mouvements et la marche de mon esprit. Ce seront, ou des vues générales sur l’art expérimental, ou des vues particulières sur un phénomène qui paraît occuper tous nos philosophes, et les diviser en deux classes. Les uns ont, ce me semble, beaucoup d’instruments et peu d’idées ; les autres ont beaucoup d’idées et n’ont point d’instruments. L’intérêt de la vérité demanderait que ceux qui réfléchissent daignassent enfin s’associer à ceux qui se remuent, afin que le spéculatif fût dispensé de se donner du mouvement ; que le manœuvre eût un but dans les mouvements infinis qu’il se donne ; que tous nos efforts se trouvassent réunis et dirigés en même temps contre la résistance de la nature ; et que, dans cette espèce de ligue philosophique, chacun fît le rôle qui lui convient.

II
Une des vérités qui aient été annoncées de nos jours avec le plus de courage et de force, qu’un bon physicien ne perdra point de vue, et qui aura certainement les suites les plus avantageuses ; c’est que la région des mathématiciens est un monde intellectuel, où ce que l’on prend pour des vérités rigoureuses perd absolument cet avantage, quand on l’apporte sur notre terre. On en a conclu que c’était à la philosophie expérimentale à rectifier les calculs de la géométrie ; et cette conséquence a été avouée, même par les géomètres. Mais à quoi bon corriger le calcul géométrique par l’expérience ? N’est-il pas plus court de s’en tenir au résultat de celle-ci ? d’où l’on voit que les mathématiques, transcendantes surtout, ne conduisent à rien de précis sans l’expérience ; que c’est une espèce de métaphysique générale, où les corps sont dépouillés de leurs qualités individuelles ; et qu’il resterait au moins à faire un grand ouvrage qu’on pourrait appeler l’ Application de l’expérience à la géométrie, ou Traité de l’aberration des mesures.

III
Je ne sais s’il y a quelque rapport entre l’esprit du jeu et le génie mathématicien ; mais il y en a beaucoup entre un jeu et les mathématiques. Laissant à part ce que le sort met d’incertitude d’un côté, ou le comparant avec ce que l’abstraction met d’inexactitude de l’autre, une partie de jeu peut être considérée comme une suite indéterminée de problèmes à résoudre, d’après des conditions données. Il n’y a point de question de mathématiques à qui la même définition ne puisse convenir, et la chose du mathématicien n’a pas plus d’existence dans la nature que celle du joueur. C’est, de part et d’autre, une affaire de convention. Lorsque les géomètres ont décrié les métaphysiciens, ils étaient bien éloignés de penser que toute leur science n’était qu’une métaphysique. On demandait un jour : Qu’est-ce qu’un métaphysicien ? Un géomètre répondit : C’est un homme qui ne sait rien. Les chimistes, les physiciens, les naturalistes, et tous ceux qui se livrent à l’art expérimental, non moins outrés dans leurs jugements, me paraissent sur le point de venger la métaphysique, et d’appliquer la même définition au géomètre. Ils disent : À quoi servent toutes ces profondes théories des corps célestes, tous ces énormes calculs de l’astronomie rationnelle, s’ils ne dispensent point Bradley ou Le Monnier d’observer le ciel ? Et je dis : heureux le géomètre, en qui une étude consommée des sciences abstraites n’aura point affaibli le goût des beaux-arts à qui Horace et Tacite seront aussi familiers que Newton ; qui saura découvrir les propriétés d’une courbe, et sentir les beautés d’un poète ; dont l’esprit et les ouvrages seront de tous les temps, et qui aura le mérite de toutes les académies ! Il ne se verra point tomber dans l’obscurité ; il n’aura point à craindre de survivre à sa renommée.

IV
Nous touchons au moment d’une grande révolution dans les sciences. Au penchant que les esprits me paraissent avoir à la morale, aux belles-lettres, à l’histoire de la nature, et à la physique expérimentale, j’oserais presque assurer qu’avant qu’il soit cent ans, on ne comptera pas trois grands géomètres en Europe. Cette science s’arrêtera tout court, où l’auront laissée les Bernouilli, les Euler, les Maupertuis, les Clairaut, les Fontaine, les D’Alembert et les La Grange. Ils auront posé les colonnes d’Hercule. On n’ira point au-delà. Leurs ouvrages subsisteront dans les siècles à venir, comme ces pyramides d’Égypte, dont les masses chargées d’hiéroglyphes réveillent en nous une idée effrayante de la puissance et des ressources des hommes qui les ont élevées.

V
Lorsqu’une science commence à naître, l’extrême considération qu’on a dans la société pour les inventeurs ; le désir de connaître par soi-même une chose qui fait beaucoup de bruit ; l’espérance de s’illustrer par quelque découverte ; l’ambition de partager un titre avec des hommes illustres, tournent tous les esprits de ce côté. En un moment, elle est cultivée par une infinité de personnes de caractères différents. Ce sont, ou des gens du monde, à qui leur oisiveté pèse ; ou les transfuges, qui s’imaginent acquérir dans la science à la mode une réputation, qu’ils ont inutilement cherchée dans d’autres sciences, qu’ils abandonnent pour elle ; les uns s’en font un métier ; d’autres y sont entraînés par goût. Tant d’efforts réunis portent assez rapidement la science jusqu’où elle peut aller. Mais, à mesure que ses limites s’étendent, celles de la considération se resserrent. On n’en a plus que pour ceux qui se distinguent par une grande supériorité. Alors la foule diminue ; on cesse de s’embarquer pour une contrée où les fortunes sont devenues rares et difficiles. Il ne reste à la science que des mercenaires à qui elle donne du pain, et que quelques hommes de génie qu’elle continue d’illustrer longtemps encore après que le prestige est dissipé, et que les yeux se sont ouverts sur l’inutilité de leurs travaux. On regarde toujours ces travaux comme des tours de force qui font honneur à l’humanité. Voilà l’abrégé historique de la géométrie, et celui de toutes les sciences qui cesseront d’instruire ou de plaire ; je n’en excepte pas même l’histoire de la nature.

VI
Quand on vient à comparer la multitude infinie des phénomènes de la nature avec les bornes de notre entendement et la faiblesse de nos organes ; peut-on jamais attendre autre chose de la lenteur de nos travaux, de leurs longues et fréquentes interruptions et de la rareté des génies créateurs, que quelques pièces rompues et séparées de la grande chaîne qui lie toutes choses ?… La philosophie expérimentale travaillerait pendant les siècles des siècles, que les matériaux qu’elle entasserait, devenus à la fin par leur nombre au-dessus de toute combinaison, ser

Voir icon more
Alternate Text