Mathématiques 3AS (الرياضيات 3 ثانوي) , livre ebook

icon

240

pages

icon

Français

icon

Ebooks

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

240

pages

icon

Français

icon

Ebooks

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Programme algérien
Voir icon arrow

Publié par

Nombre de lectures

644

EAN13

9789931639039

Langue

Français

Poids de l'ouvrage

3 Mo

õîŔğîœč
őŎŇîüĿí łŔŀĬøĿí ņŃ ôüĿîüĿí ôňĔĿí
ôŔòœĎĀøĿí ŁŎŀĬĿí ôòĬė

رفشوب ةدنه
يوناثلا ميلعّتلا ةذاتسأ

XICÈ

Ą

ăĄ

ąĈ

Ĉā

Ċć

Ăăā

ĂĆĂ

ĂćĈ

ĂĊą

ăăć

ÔeOIÈ

çÈvNGÈ

ËVVONÈ ® Ă

ãVJÈé ÒÈeMÈ ® ă

XP`È åÈécÈ ® Ą
ò ò
ò

XĴPNÈ XPMÒVvLÈ XÈcÈ ® ą

XP{VDIÈ XcNĩÈ ® Ć

Xe+È ÐÈc`È ® ć

XÐcGÈ ËVPV+È é mÈĹV çVļÈ ® Ĉ

XPV XVO ® ĉ

xLVKÈ ÉV!)È ® Ċ

ËVMÈ ® Ăā

© Éditions Sédia pour la présente édition en Algérie, tous droits réservés pour l'Algérie-Alger 2016.
ISBN: 978-9931-639-03-9

Exos résolus - Maths Terminale S - Enseignement obligatoire et de spécialité.
Claudine Renard et Geneviève Roche.
© HACHETTE Livre 2013, 58, rue Jean Bleuzen, 92178 VANVES CEDEX, ISBN 978-2011608376.

ËVVONÈ ® Ă

ÔÒcáÈ

_l
.ىطعم ملعم يfةلادلا ىنحنم وهCfو ،روحما،ةيقيقح دادعا يهاذه ي
ةياهنالا دنع ةيهتنم ةياهن
: فيرعت
+∞راوج ي ةفرعم f1
، يوحيحوتفم لاجم لك لجا نم نا ينعي +∞ وحنxlf(x)
لوؤت امدنعىا لوؤت
l
flx f(x)
xl i→m (x) بتكن .هديرن يذلا رادقماب ربك= :لجأ نمميق لك يوحي
-∞راوج ي ةفرعم f2
l lf(x)
،يوحي حوتفم لاجم لك لجا نم نا ينعي -∞ وحنx لوؤت امدنعىا لوؤت
f(x)
: بتكن.هديرن يذلا رادقماب ةربك ةقلطما هتميق بلاسxميق لك يوحيلجأ نم
f(x) =
l
xl i→m
ةيعجرمـلا لاودلا ةياهن
1 1 11
x ,x ,x ,x
-∞ و +∞ دنع 0 اهتياهن....،4 3 2لاودلا
x x xx
مودعم رغ يعيبطnلك لجا نم
1 1
lim =0 و lim= 0
nn
x x
x→x→
4 4

-2

-1

2

-2

0

1

2

-2

-1

2

-2

0

1

2

-4

-2

ÔÒcáÈ

تايثادحاا رواحم ةيزاوما ةبراقما تايقتسمـلا
وه y= ةلداعما وذ6gzY5˯ ΃
l
+∞ دنعCىنحنملل براقم ميقتسم
f
lim فو اذا
f(x) =l: اذاطق

x→

0 12
2
وه y= ةلداعما وذ6gzY5˯ ΃
l
اذا -∞ دنعCfىنحنملل براقم ميقتسم
lim اذا طقف و= :
f(x) l
x→
-4 -3 -2 -10
ةياهنالا دنع ةيهتنم رغ ةياهن
: فيرعت
+∞ راوج ي ةفرعمf1
[A; +∞]لكشلا نم لاجم لك لجا نم نا ينعي +∞ ىاxلوؤي امدنع -∞ ىا لوؤت
f(x)
f(x)x f(x)
xl→i m ميق لك يوحيلجا نم.فاكلا رادقماب ربك: بتكن= +∞
+∞ راوج ي ةفرعم f2
[-∞; A]لكشلا نم لاجم لك لجا نم نا ينعي +∞ وحنxلوؤي امدنع -∞ ىا لوؤتf(x)
limكن .فاكلا رادقما
x→ f(x) = -∞: بتب ربكxلجا نمf(x)ميق لك يوحي
-∞ راوج ي ةفرعم f3
[A;+∞]لكشلا نم لاجم لك لجا نم نا ينعي -∞ وحنxلوؤي امدنع +∞ ىا لوؤت
f(x)
: بتكن.فاكلا رادقمابةربك ةقلطما هتميق و بلاسxلجا نمf(x)ميق لك يوحي
f(x) = +∞
lxi→m
-∞ راوج ي ةفرعمf4
[A;+∞]لكشلا نم لاجم لك لجا نم نا ينعي -∞ وحنxلوؤي امدنع -∞ ىا لوؤت
f(x)
: بتكن.فاكلا رادقمابةربك ةقلطما هتميق و بلاسxلجا نمf(x)ميق لك يوحي
f(x) = -∞
xl i→m
4

ËVVONÈ ®1
a يقيقح ددع دنع ةياهنلا
.aيقيقح ددع راوج ي ةفرعمf،ةرقفلا هذه ي
: فيرعت
ودنع +∞ ىا لوؤت%
ميق لك يوحي [A;+∞] لاž

Voir icon more
Alternate Text