Li-ion Batteries , livre ebook

icon

430

pages

icon

English

icon

Ebooks

2022

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

430

pages

icon

English

icon

Ebooks

2022

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Grâce à l’amélioration de leurs performances et la diminution de leur coût de fabrication, les accumulateurs au lithium initialement commercialisés en 1991 par SONY pour alimenter les équipements portables, jouent désormais un rôle-clef dans le développement massif attendu de la mobilité électrique.

Connectées au réseau électrique via les véhicules électrifiés dans lesquels elles seront embarquées, les batteries au lithium seront de surcroît utilisées comme moyen massif de stockage tampon des énergies renouvelables, ainsi que comme outils de soutien au réseau (effacement des heures de pointe, régulation de fréquence…), permettant, au-delà de leur fonction première (assurer la mobilité du véhicule), de démultiplier leur utilité.

Ces évolutions vont profondément transformer nos sociétés, et permettre non seulement de réduire très significativement les émissions de CO2 et la consommation d’énergies fossiles (pétrole, gaz, charbon), mais également, si elles sont conduites et coordonnées efficacement, de contribuer à la croissance économique.

Le développement de la mobilité électrique offre ainsi une opportunité unique de faire coïncider des exigences légitimes de protection de l’environnement avec des objectifs de développement industriel.

Cet ouvrage a pour objectif d’offrir au lecteur une vue d’ensemble des technologies d’accumulateurs au lithium, de fournir un état des lieux des initiatives en cours dans le monde, et de dresser quelques perspectives pour l’avenir.

Chercheurs au CEA et au CNRS, les auteurs de cet ouvrage disposent, tous, d’une expertise fondée sur plusieurs années d’expérience dans le développement des filières d’accumulateurs au lithium et des filières post lithium-Ion, sur l’ensemble des éléments de la chaîne de la valeur, depuis le design et la synthèse des matériaux d’électrodes, jusqu’à l’intégration dans le véhicule.


Voir icon arrow

Publié par

Date de parution

06 janvier 2022

Nombre de lectures

1

EAN13

9782759825677

Langue

English

Poids de l'ouvrage

47 Mo

Current Natural Sciences
Coordinated by Didier BLOCH, Sébastien MARTINET, Thierry PRIEM and Christian NGÔ
Liion Batteries Development and Perspectives
E N E R G Y
E N E R G Y
ISBN : 978-2-7598-2555-4
9 782759 825554
Current Natural Sciences
Liion Batteries Development and Perspectives
Coordinated by Didier BLOCH, Sébastien MARTINET, Thierry PRIEM and Christian NGÔ
Thanks to their improved performance and the continuous decrease of their manufacturing costs, lithium batteries, initially marketed in 1991 by SONY to power portable equipment, now play a key role in the expected massive development of electric mobility.
Connected to the electricity grid via the electrified vehicles they will power,lithiumbatteries will also be used as a massive means of buffering renewable energies, as well as tools for supporting the network (peak shaving, frequency regulation, etc.), making it possible to multiply their usefulness beyond their primary function (ensuring vehicle mobility).
These developments will profoundly transform our societies, and will not only make it possible to significantly reduce CO emissions and the 2 consumption of fossil fuels (oil, gas, coal), but also, if they are conducted and coordinated effectively, to contribute to economic growth.
The development of electric mobility thus offers a unique opportunity to reconcile legitimate environmental protection requirements with industrial development objectives.
The aim of this book is to provide the reader with an overview of lithium battery technologies, to give an overview of current initiatives around the world, and to outline some perspectives for the future.
The authors of this book, who are researchers at the CEA and the CNRS, all have expertise based on several years of experience in the development of lithium batteries and postlithium ion batteries, covering all the elements of the value chain, from the design and synthesis of electrode materials to integration in the vehicle.
Price: 109 €
www.edpsciences.org
Current Natural Science
Coordinated by Didier BLOCH, Sébastien MARTINET, Thierry PRIEM and Christian NGÔ
Liion Batteries
Development and Perspectives
Printed in France
EDP SciencesISBN(print): 9782759825554ISBN(ebook): 9782759825677 DOI: 10.1051/9782759825554
All rights relative to translation, adaptation and reproduction by any means whatsoever are reserved, worldwide. In accordance with the terms of paragraphs 2 and 3 of Article 41 of the French Act dated March 11, 1957,copies or reproductions reserved strictly for private use and not intended for collective useand, on the other hand, analyses and short quotations for example or illustrative purposes, are allowed. Otherwise,any representation or reproductionwhether in full or in partwithout the consent of the author or of his successors or assigns, is unlawful(Article 40, paragraph 1). Any representation or reproduction, by any means whatsoever, will therefore be deemed an infringement of copyright punishable under Articles 425 and following of the French Penal Code.
Science Press, EDP Sciences, 2021
Preface
In order, in particular, to support energy transition, necessary and essential to safeguard our planet, energy storage needs will increase very sharply in the coming decades, whether for stationary applications or for mobility with a global market which should increase from 100 GWh in 2016 to 3 TWh (3000 GWh) in 2030. Li ion batteries have a number of advantages that help meet these needs. The 1 current challenges are to increase performances (to reach more than 350 Wh.kg and 1 1000 Wh.L at cell level) while aiming for increased safety and a cell target cost of around80120 per kWh. The socalled traditional Li ion is now reaching its limits in terms of mass and volume energy densities, which is pushing all scientific and industrial players towards the identification of new technological breakthroughs on new generations of batteries. Particular attention is also fundamental with regard to the sustainability of the solutions proposed by securing supplies, avoiding socalled criticalmaterials in terms of environmental impact, using solventfree processes, but also more generally by considering recycling and full battery life cycle analysis. This book, by addressing the topic of batteries across the entire value chain from materials to the system, offers readers elements of understanding and reflection allowing everyone to have a better knowledge of the expected assets, but also of the hurdles and issues related to the development of present and new generations of Liion or post Liion Batteries. The development of these new batteries as a storage solution, beyond being useful for the development of clean energies to support the energy transition, will have a certain environmental and societal impact in the years to come.
Severine JOUANNEAU SI LARBI, Head of the Electricity and Hydrogen Department for Transport at CEA/LITEN
DOI: 10.1051/9782759825554.c901 Science Press, EDP Sciences, 2021
Contents
Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CHAPTER 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Brief History of Primary and Secondary Batteries. . . . . . . . . . . . . . . . 1.2 General Information on Liion Batteries. . . . . . . . . . . . . . . . . . . . . . . Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CHAPTER 2 Positive Electrode Materials forLithiumionAccumulators. . . . . . . . . . . . 2.1 Positive Electrode Materials ofSpinelStructure. . . . . . . . . . . . . . . . 2.2 Positive Electrode Materials with Lithiated Layered Oxide Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Positive Electrode Materials with Olivine Structure. . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CHAPTER 3 Negative Electrode Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Negative Electrode Materials: Several Solutions. . . . . . . . . . . . . . . . . . 3.1.1 InsertionIntercalation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.2 Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.3 Alloying. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Carbon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 Historical Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.3 Relationship between Structural Characteristics and Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Silicon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 (De)lithiation Mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.2 Degradation Mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.3 Material Improvement Approaches. . . . . . . . . . . . . . . . . . . . . . 3.4 Lithium Metal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
III
1 6 9 11
13 14
20 32 37
45 45 46 47 47 48 48 49
50 53 53 54 56 57 59
VI
Contents
CHAPTER 4 Organic Electrode Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Different Types of Organic Electrode Materials. . . . . . . . . . . . . . . . . . 4.1.1πExtended System (Conducting Polymers). . . . . . . . . . . . . . . 4.1.2 Stable Radical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.3 Organosulfides & Thioethers. . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.4 Carbonyl Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.5 Aromatic Amines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Implementation Strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.1 Grafting on Inorganic or Organic Support. . . . . . . . . . . . . . . . 4.2.2 Polyanionic Salt Formation. . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CHAPTER 5 Electrolytes and Separators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Liquid Electrolytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.1 Lithium Salts and Organic Solvents. . . . . . . . . . . . . . . . . . . . . 5.1.2 Lithium Salts and Ionic Liquids. . . . . . . . . . . . . . . . . . . . . . . . 5.2 Separators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.1 Properties of Separators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.2 The Separator Market. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.3 Cost and Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CHAPTER 6 Naion Batteries: Should/Can Lithium be Replaced?. . . . . . . . . . . . . . . . . . 6.1 General Aspects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.1 Should Lithium be Replaced?. . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.2 Can Lithium be Replaced? Towards a 100% Abundant ElementBased Battery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 The Naion Technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.1 Brief History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.2 Operating Principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 State of the Art. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.1 Negative Electrode Materials. . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.2 NonCarbon Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.3 Positive Electrode Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.4 Electrolytes and Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4 Full System Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5 Outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5.1 Low Cost Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5.2 High Power Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
63 65 65 66 67 67 68 68 69 71 74
79 80 80 84 85 85 86 87 88
89 89 89
92 93 93 93 95 95 96 98 101 102 102 102 103 103
Contents
CHAPTER 7 MetalSulfur Batteries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1 The MetalSulfur Cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.1 Advantages and Comparison with Other Technologies. . . . . . . 7.1.2 Working Mechanism of the MetalSulfur Cell. . . . . . . . . . . . . . 7.1.3 The (Li,Na)ion Sulfur Cell. . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Technology State of the Art and Performances. . . . . . . . . . . . . . . . . . 7.2.1 Main Actors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.2 Understanding the Complex Mechanism. . . . . . . . . . . . . . . . . . 7.2.3 Development Strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.4 AllSolidState MetalSulfur Batteries. . . . . . . . . . . . . . . . . . . . 7.2.5 Industrial Actors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 Perspectives and Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CHAPTER 8 All SolidState Batteries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1 Introduction and Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Main Families of Solid Ionic Conductors. . . . . . . . . . . . . . . . . . . . . . . 8.2.1 Polymeric Solid Electrolytes. . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.2 Inorganic Solid Electrolytes. . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.3 Hybrid Solid Electrolytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3 Electrochemical Stability of Solid Electrolytes. . . . . . . . . . . . . . . . . . . 8.4 AllSolidState Cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5 Academic & Industrial Players. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CHAPTER 9 Supercapacitors: From Material to Cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1 Operating Principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2 Carbon/Carbon Based Technology. . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.1 Electrode Design and Components. . . . . . . . . . . . . . . . . . . . . . 9.2.2 Electrolyte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.3 Separators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3 Hybrid Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.1 Activated Carbon/MnO System. . . . . . . . . . . . . . . . . . . . . . . 2 9.3.2 Lead Oxide/Activated Carbon System. . . . . . . . . . . . . . . . . . . 9.3.3 NiOOH/Activated Carbon System. . . . . . . . . . . . . . . . . . . . . . 9.3.4 Graphite/Activated Carbon System. . . . . . . . . . . . . . . . . . . . . Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CHAPTER 10 Supercapacitors: Cells and Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1 Cell Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VII
107 107 107 108 110 110 110 110 112 119 119 121 122
125 125 127 127 130 133 135 137 138 139
145 147 152 152 166 176 179 181 182 182 182 186
199 199
VIII
Contents
10.1.1 Small Cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.2 HighCapacity Cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2 Design of Modules and Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.1 Modules Based on Hard Casing Cells. . . . . . . . . . . . . . . . . . 10.2.2 High Capacity Modules Based on Soft Packaging Cells (Pouch Cells). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.3 High Capacity Modules Working in Aqueous Medium. . . . . . Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CHAPTER 11 Characterization of the Electrical Performance of Liion Cells. . . . . . . . . . . . 11.1 Characterization of the Electrical Performance of Individual Cells. . . 11.1.1 Acceptance Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.2 Beginning of Life Performance Tests. . . . . . . . . . . . . . . . . . . 11.1.3 Ageing Performance Tests. . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Resistance Measurements of Individual Cells. . . . . . . . . . . . . . . . . . . 11.2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.2 How to Define an Internal Resistance?. . . . . . . . . . . . . . . . . 11.2.3 Different Methods of Measuring Internal Resistance. . . . . . . 11.2.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CHAPTER 12 Microstructural and Physical and Chemical Characterizations of Battery Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1 Introduction: Characterization Methodology to Understand the Electrochemical Response of a Battery. . . . . . . . . . . . . . . . . . . . 12.2 Analysis of Mechanisms Associated with Exchangeable Lithium Loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2.1 SEI Formation and Li Metal Precipitation on Negative Electrode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2.2 Loss of Lithium Content of Positive Electrode. . . . . . . . . . . 12.3 Analysis of Phase Transformations that Limit Lithium Mobility. . . . 12.3.1 Microstructural Modification of a Positive Electrode. . . . . . . 12.4 Mechanical Blocking, Obstruction, Disconnection and Loss of Electrical Contact. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.1 Loss of Graphite Electrode Capacity in Cycling at Low Temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.2 Exogenous Deposits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5 Electrolyte Degradation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6 Perspectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
200 200 207 208
213 216 218
221 221 221 223 227 229 229 229 231 243 244
245
245
249
249 252 254 254
255
255 257 258 259 259
Voir icon more
A Catalogue of Asian Mosses
Category

Ebooks

A Catalogue of Asian Mosses

Yu Jia, Qiang He

A Catalogue of Asian Mosses Alternate Text
Category

Ebooks

Autres

A Catalogue of Asian Mosses

Yu Jia, Qiang He

Book

728 pages

Flag

English

An Introduction to Linear Algebra
Category

Ebooks

An Introduction to Linear Algebra

Liu Xuan, Zhi ZHAO, Wei-Hui LIU, Xiao-Qing JIN

An Introduction to Linear Algebra Alternate Text
Category

Ebooks

Sciences formelles

An Introduction to Linear Algebra

Liu Xuan, Zhi ZHAO, Wei-Hui LIU, Xiao-Qing JIN

Book

238 pages

Flag

English

Introduction to Abstract Algebra
Category

Ebooks

Introduction to Abstract Algebra

Libin Li, Kaiming Zhao

Introduction to Abstract Algebra Alternate Text
Category

Ebooks

Sciences formelles

Introduction to Abstract Algebra

Libin Li, Kaiming Zhao

Book

186 pages

Flag

English

Managerial Challenges of Industry 4.0
Category

Ebooks

Managerial Challenges of Industry 4.0

Carolina MACHADO and J.Paulo DAVIM (Edited by)

Managerial Challenges of Industry 4.0 Alternate Text
Category

Ebooks

Gestion et management

Managerial Challenges of Industry 4.0

Carolina MACHADO and J.Paulo DAVIM (Edited by)

Book

158 pages

Flag

English

Car following Dynamics: Experiments and Models
Category

Ebooks

Car following Dynamics: Experiments and Models

Junfang TIAN, Jiang Rui

Car following Dynamics: Experiments and Models Alternate Text
Category

Ebooks

Techniques

Car following Dynamics: Experiments and Models

Junfang TIAN, Jiang Rui

Book

160 pages

Flag

English

Global Well-Posedness for Some Fluid Models
Category

Ebooks

Global Well-Posedness for Some Fluid Models

Qin Yuming, Jianlin ZHANG

Global Well-Posedness for Some Fluid Models Alternate Text
Category

Ebooks

Sciences formelles

Global Well-Posedness for Some Fluid Models

Qin Yuming, Jianlin ZHANG

Book

294 pages

Flag

English

A Monograph of the genus Microtoena (Lamiaceae)
Category

Ebooks

A Monograph of the genus Microtoena (Lamiaceae)

Wang Qiang

A Monograph of the genus Microtoena (Lamiaceae) Alternate Text
Category

Ebooks

Science de la nature

A Monograph of the genus Microtoena (Lamiaceae)

Wang Qiang

Book

150 pages

Flag

English

1D Radiative Fluid and Liquid Crystal Equations
Category

Ebooks

1D Radiative Fluid and Liquid Crystal Equations

Qin Yuming

1D Radiative Fluid and Liquid Crystal Equations Alternate Text
Category

Ebooks

Sciences formelles

1D Radiative Fluid and Liquid Crystal Equations

Qin Yuming

Book

154 pages

Flag

English

Atomic Clusters
Category

Ebooks

Atomic Clusters

Michel Broyer, Patrice Mélinon

Atomic Clusters Alternate Text
Category

Ebooks

Sciences formelles

Atomic Clusters

Michel Broyer, Patrice Mélinon

Book

416 pages

Flag

English

What is Space-Time Made of ?
Category

Ebooks

What is Space-Time Made of ?

David IZABEL

What is Space-Time Made of ? Alternate Text
Category

Ebooks

Sciences formelles

What is Space-Time Made of ?

David IZABEL

Book

366 pages

Flag

English

Designing Protected Area Networks
Category

Ebooks

Designing Protected Area Networks

Alain Billionnet

Designing Protected Area Networks Alternate Text
Category

Ebooks

Sciences formelles

Designing Protected Area Networks

Alain Billionnet

Book

372 pages

Flag

English

The basics of electron transport in spintronics
Category

Ebooks

The basics of electron transport in spintronics

Vincent Baltz

The basics of electron transport in spintronics Alternate Text
Category

Ebooks

Sciences formelles

The basics of electron transport in spintronics

Vincent Baltz

Book

170 pages

Flag

English

Ultra-cold atoms, ions, molecules and quantum technologies
Category

Ebooks

Ultra-cold atoms, ions, molecules and quantum technologies

Héléne Perrin, Robin Kaiser, Michèle Leduc

Ultra-cold atoms, ions, molecules and quantum technologies Alternate Text
Category

Ebooks

Sciences formelles

Ultra-cold atoms, ions, molecules and quantum technologies

Héléne Perrin, Robin Kaiser, Michèle Leduc

Book

194 pages

Flag

English

A Catalogue of Asian Liverworts and Hornworts
Category

Ebooks

A Catalogue of Asian Liverworts and Hornworts

Yu Jia, Qiang He

A Catalogue of Asian Liverworts and Hornworts Alternate Text
Category

Ebooks

Science de la nature

A Catalogue of Asian Liverworts and Hornworts

Yu Jia, Qiang He

Book

428 pages

Flag

English

Sign Pattern for Generalized Inverses
Category

Ebooks

Sign Pattern for Generalized Inverses

Changjiang BU, Lizhu SUN, Yimin Wei

Sign Pattern for Generalized Inverses Alternate Text
Category

Ebooks

Sciences formelles

Sign Pattern for Generalized Inverses

Changjiang BU, Lizhu SUN, Yimin Wei

Book

234 pages

Flag

English

Alternate Text