166
pages
English
Documents
2009
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
166
pages
English
Documents
2009
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
Publié par
Publié le
01 janvier 2009
Nombre de lectures
32
Langue
English
Poids de l'ouvrage
5 Mo
Publié par
Publié le
01 janvier 2009
Langue
English
Poids de l'ouvrage
5 Mo
Wideband impedance spectrum analyzer with arbitrary
fine frequency resolution for in situ sensor applications
Dissertation
zur Erlangung des akademischen Grades
Doktoringenieur
(Dr.-Ing.)
von Dipl.-Ing. Thomas Schneider
geboren am 31. Dezember 1977
in Blankenburg
genehmigt durch die Fakultät für Elektrotechnik und Informationstechnik
der Otto-von-Guericke-Universität Magdeburg
Gutachter: Prof. Dr. rer. nat. habil. Peter Hauptmann
Prof. Dr.-Ing. habil. Helmut Beikirch
Eingereicht am 02. Juli 2008
Promotionskolloquium am 05. Februar 2009
Preface
The present thesis results from my work as research assistant at the Sensor and Measurement Tech-
nology group in the Institute of Micro and Sensor Systems at the Otto-von-Guericke-University
Magdeburg.
First, I would like to express my special gratitude to my doctoral advisor Prof. Dr. Peter R. Haupt-
mann for providing me the opportunity to carry out my research work on an interesting and diversified
topic, and for all guidance and support.
I am also very grateful to all my colleagues at the Institute of Micro– and Sensor Systems for their
kind assistance. Special thanks go to Steffen Doerner for the technical advice that he has given me on
the development of the analyzer electronics and his good teamwork throughout this time. I am also
grateful to Dr. Ralf Lucklum for his suggestions in theoretical discussions and Ulrike Hempel for giv-
ing me helpful support in my theoretical and experimental work on lateral field excited resonators. Our
secretary, Mrs. Annett Wertan, deserves special thanks for her kind help with various administrative
problems and the tasty breakfast that gave me the daily energy to work successfully. I want to thank
Stephan Adler for his craftsmanship on the development of sensor probes. Further, I gratefully ac-
knowledge all students, especially Marcel Thränhardt, who worked with me persistently.
Some interesting experimental results of my work were obtained during my four-month research visit
to the laboratory for Surface Science and Technology at the University of Maine. I am very grateful
Prof. Dr. John F. Vetelino for giving me this opportunity. In this regard, I would like to thank Don
McCann for his research and organizational assistance during this time.
Dr. Holger Fritze and Denny Richter from the University of Clausthal deserve special thank for their
close collaboration and the interesting results obtained from our research working.
I express my thanks to all my friends, with whom I have shared my time for recreation from the work.
Finally, I would like to express my deepest gratitude to my family for their support and great encou-
ragement throughout this time.
Benzingerode, July 02, 2008
i
ii
Zusammenfassung
Die Verwendung moderner Sensoren erfordert geeignete Messmethoden und Messinstrumente, um die
Sensorantwort hinsichtlich der Zielparameter des zu untersuchenden Mediums genau zu bestimmen.
Das Impedanzspektrum des Sensors liefert vielfache Informationen, die Schlussfolgerungen über den
Entwurf des entsprechenden Sensors, die Sensor-Medium Interaktion oder zur weitergehenden Model-
lierung zulassen. Zu diesem Zweck ist die Analyse des Sensorimpedanzspektrums in Laboranwendun-
gen unter Verwendung handelsüblicher Messinstrumente weit verbreitet. Die vorliegende Arbeit stellt
ein neues Elektroniksystem vor, das breitbandige Impedanzspektrumsanalyse für ortsveränderliche
in situ Sensoranwendungen zur Verfügung stellt. Im Unterschied zu den umfangreichen Labormessin-
strumenten zeichnet sich das entwickelte Elektroniksystem durch einen kompakten, eigenständigen
Messaufbau für Sensoranwendungen im Labor sowie industriellen Bereich aus und ermöglicht eine
sehr schnelle Messdatenerfassung.
Das Elektroniksystem ist hauptsächlich für Anwendungen von akustischen Mikrosensoren und kapazi-
tiven Messsonden bestimmt. Mit diesen ausgewählten Sensoren wird den unterschiedlichen Anforde-
rungen an schmalbandige and breitbandige Impedanzspektroskopie entsprochen. Damit kann das
Elektroniksystem vielseitig für jeden Sensor verwendet werden, der elektrische oder mechanische (wie
akustische) Signale in eine elektrische Impedanz wandelt. Unter Berücksichtigung der Hauptzielset-
zung eines minimierten Schaltungsaufwandes wurde ein ausgereiftes Hybridsynthesizerdesign entwi-
ckelt, das verschiedene analoge und digitale Synthesetechniken kombiniert. Es bietet eine breite Fre-
quenzabdeckung (10 kHz–1 GHz) mit beliebig feiner Frequenzauflösung (<1 Hz) sowie ausreichende
Spektralqualität des Ausgangssignals. Eine signifikante Verringerung des Gesamtschaltungsdesigns
sowie eine schnelle Sensordatenerfassung werden durch eine Direktabtasttechnik erreicht, die die
hochfrequenten Messsignale ohne bedeutende analoge Signalaufbereitung analog-digital wandelt. Da
die Gesamtmessgenauigkeit hauptsächlich von dem Signal-Rausch-Verhältnis der direkt abgetasteten
Messsignale bestimmt wird, erfolgt die Bestimmung der Signalparameter (Amplitude und Phase) auf
der Basis einer Optimierungsmethode zur Sinuskurvenanpassung. Eine deutliche Rauschminderung
kann durch die Anzahl der gewählten Abtastwerte erreicht werden. Zur Unterstützung einer schnellen
Messdatenerfassung wurde anstelle softwarebasierter Berechnungen der Sinuskurvenanpassung eine
hardwarebasierte Implementierung der digitalen Signalverarbeitung in programmierbarer Logik reali-
siert.
Testmessungen mit definierten Lastimpedanzen bestätigten eine mit Labormessgeräten vergleichbare
Messgenauigkeit. Konkrete Anwendungen des Elektroniksystems für die Impedanzspektroskopie an
verschiedenen resonanten Mikrosensoren und mit einer kapazitiven Messsonde für die Flüssigkeits-
analytik werden demonstriert.
iii
iv
Abstract
The application of modern sensor devices requires appropriate measurement methods and sophisti-
cated electronic instruments in order to precisely determine the sensor response with regard to the
target parameters of a medium under study. The impedance spectrum of the sensor provides multiple
information, which allows for conclusions about the design of the sensor device, the sensor-medium
interaction, or for advanced modeling. For this purpose, the analysis of the sensor’s impedance spec-
trum is well established in laboratory applications using commercial benchtop instruments. The
present work introduces a novel electronics system that provides wideband high-frequency impedance
spectrum analysis for portable in situ sensor applications. Unlike bulky benchtop instruments, the elec-
tronics system allows for a compact, stand-alone in situ measurement setup for laboratory as well as
industrial sensor applications and very fast data acquisition.
The electronics system is primarily intended for sensor applications of acoustic microsensors and ca-
pacitive sensor probes. These particular sensor applications specify the different measurement re-
quirements on wideband and narrowband impedance spectroscopy. This provides universal applicabil-
ity of the electronics system to any appropriate sensor that transduces electrical or non-electrical (such
as acoustic) signals into an electrical impedance. With regard to the main objective of minimizing
circuit design, a sophisticated single-board hybrid synthesizer architecture combining various analog
and digital synthesis techniques has been developed, which properly meets the requirements on broad
frequency coverage (10 kHz–1 GHz) with arbitrary fine frequency resolution (<1 Hz), fast frequency
settling, and good spectral quality of the output signal. Significant reduction of the total circuit design
as well as fast sensor data acquisition are achieved by utilizing a direct-sampling technique that ana-
log-to-digital converts the high-frequency measurement signals without decisive analog signal condi-
tioning. Since the overall measurement precision primarily depends on the signal-to-noise ratio of the
directly sampled signals, a sine-wave fitting algorithm for extracting the crucial signal parameters
(amplitude and phase) is applied. Significant noise reduction can be achieved by the number of chosen
samples. To support the fast data acquisition capability, instead of software computation of the sine-
wave fitting, a complete hardware implementation of the digital signal processing into a field-
programmable gate array has been realized.
Test measurements with well-defined impedance load conditions confirmed a sufficient measurement
precision, which is comparable to that using a standard benchtop instrument. Applications of the elec-
tronics system for impedance spectroscopy on various acoustic microsensors and a capacitive sensor
probe for in-liquid measurements are successfully demonstrated.
v
vi
Contents
Preface .................................................................................................................................... i <