Towards a User-Oriented Benchmark for Transport Protocols ...

icon

30

pages

icon

English

icon

Documents

Écrit par

Publié par

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

30

pages

icon

English

icon

Ebook

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

Laboratoire de l’Informatique du Parallélisme
École Normale Supérieure de Lyon
oUnité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL n 5668
Towards a User-Oriented Benchmark for
Transport Protocols Comparison in very High
Speed Networks
Romaric Guillier ,
July 2007Ludovic Hablot ,
Pascale Vicat-Blanc Primet
oResearch Report N 2007-35
École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80
Adresse électronique : lip@ens-lyon.fr Towards a User-Oriented Benchmark for Transport Protocols
Comparison in very High Speed Networks
Romaric Guillier , Ludovic Hablot , Pascale Vicat-Blanc Primet
July 2007
Abstract
Standard TCP faces some performance limitations in very high speed wide
area networks, mainly due to a long end-to-end feedback loop and a conser-
vative behaviour with respect to congestion. Many TCP variants have been
proposed to overcome these limitations. However, TCP is a complex protocol
with many user-configurable parameters and a range of different implementa-
tions. It is then important to define measurement methods so that the transport
services and protocols can evolve guided by scientific principles and compared
quantitatively. The goal of this report is to present some steps towards a user-
oriented benchmark, called ITB, for high speed transport protocols compari-
son. We first present and analyse some results reported in the literature. From
this study we identify classes of ...
Voir Alternate Text

Publié par

Nombre de lectures

37

Langue

English

Poids de l'ouvrage

3 Mo

Laboratoiredel'InformatiqueduParallélismeÉcoleNormaleSupérieuredeLyonUnitéMixtedeRechercheCNRS-INRIA-ENSLYON-UCBLno5668TowardsaUser-OrientedBenchmarkforTransportProtocolsComparisoninveryHighSpeedNetworksRomaricGuillier,LudovicHablot,PascaleVicat-BlancPrimetJuly2007ResearchReportNo2007-35ÉcoleNormaleSupérieuredeLyon46Alléed'Italie,69364LyonCedex07,FranceTéléphone:+33(0)4.72.72.80.37Télécopieur:+33(0)4.72.72.80.80Adresseélectronique:lip@ens-lyon.fr
TowardsaUser-OrientedBenchmarkforTransportProtocolsComparisoninveryHighSpeedNetworksRomaricGuillier,LudovicHablot,PascaleVicat-BlancPrimetJuly2007AbstractStandardTCPfacessomeperformancelimitationsinveryhighspeedwideareanetworks,mainlyduetoalongend-to-endfeedbackloopandaconser-vativebehaviourwithrespecttocongestion.ManyTCPvariantshavebeenproposedtoovercometheselimitations.However,TCPisacomplexprotocolwithmanyuser-congurableparametersandarangeofdifferentimplementa-tions.Itisthenimportanttodenemeasurementmethodssothatthetransportservicesandprotocolscanevolveguidedbyscienticprinciplesandcomparedquantitatively.Thegoalofthisreportistopresentsomestepstowardsauser-orientedbenchmark,calledITB,forhighspeedtransportprotocolscompari-son.Werstpresentandanalysesomeresultsreportedintheliterature.Fromthisstudyweidentifyclassesofrepresentativeapplicationsandusefulmetrics.Wethenisolateinfrastructureparametersandtrafcfactorswhichinuecnetheprotocolbehaviour.Thisenableustodenescenariocapturingandsynthesis-ingcomprehensiveandusefulproperties.Wenallyillustratethisproposalbypreliminaryresultsobtainedonourexperimentalenvironment,Grid'5000,wehavebuiltandareusingforcontributinginthisbenchmarkdesign.Keywords:ProtocolBenchmark,TCP,Performanceevaluation,HighSpeedtransport,HighSpeednetworksRésumé
Laversion“standard”deTCPestconfrontéeàuncertainnombredelimita-tionsdeperformancedanslesréseauxàtréshautdébitquisontprincipale-mentcauséesparunebouclederétroactiondeboutenbouttroplongueetuncomportementtrèsprudentvis-à-visdelacongestion.UngrandnombredevariantesdeTCPontétéproposépourtenterdesurpasserceslimitations.Ce-pendantTCPestunprotocolecomplexecomportantbeaucoupdeparamêtresdénissablesparl'utilisateuretunéventaild'implémentationsdifférentes.Ilestalorsimportantdedénirdesméthodesdemesureanquelesservicesetlesprotocolesdetransportpuissentévoluerselondesprincipesscientiquesetêtrecomparésquantitativement.Lebutdecerapportestdeprésenterunedémarcheversladénitiond'unbancd'essaiorientéutilisateur,appeléITB,pourlacomparaisondeprotocolesdetransportsdanslesréseauxàhautdébit.Nouscommençonsparprésenteretanalyserquelquesrésultatsprésentdanslalittérature.Apartirdecetteétude,nousidentionsdesclassesreprésenta-tivesd'applicationsetdesmétriquesutiles.Nousisolonsensuitelesparamêtresinfrastructurelsetlesfacteursdetracquiontuneinuencesurlecomporte-mentdesprotocoles.Cecinouspermetdedénirdesscénariospermettantdecaptureretdesynthétiserdespropriétésutilesetcomplètes.Finalement,nousprésentonsdesexemplesderésultatsobtenusdansl'environmentexpérimentalGrid'5000illustrantnotredémarche.Mots-clés:Bancd'essaideprotocoles,TCP,évaluationdeperformances,transporthaut-débit,réseauxhaut-débit2
BenchmarkforTransportProtocols1Contents1Introduction22Relatedwork32.1Transportprotocolsforhighspeednetworks......................32.2Evaluationframeworks.................................42.2.1EvaluationsonRealExperimentalNetworks.................52.2.2EvaluationsonEmulatedNetworks......................52.2.3EvaluationswithNS2simulator........................73DenitionandgoalsofaTransportBenchmarksuite73.1Whatisabenchmark?..................................73.2ExampleoftheNPBanditsusage...........................73.3Guidelinesfortransportprotocolbenchmarking....................84ITB:InriaTransportBenchmarkproposal84.1Representativeapplicationsselection..........................84.2Metrics.........................................94.2.1Metricstypes..................................94.2.2Throughput...................................94.2.3Fairness.....................................104.2.4Efciency....................................104.3Systemparameters...................................104.3.1Topology....................................114.3.2Capacities....................................114.4Workloadparameters..................................114.5Benchmark.......................................124.5.1WMapplicationcharacteristics.........................124.5.2PPapplicationcharacteristics.........................124.5.3BUapplicationcharacteristics.........................134.5.4PAapplicationcharacteristics.........................134.6ITBclassesdenition..................................135Realexperiments155.1Topologyexample....................................155.2TUapplication.....................................165.3BUapplication.....................................165.4PAapplication......................................185.5ITBparameters.....................................185.5.1Problemsize:RTTparameter.........................185.5.2Workloadparameters..............................215.6Metricsconsiderationexample.............................236Conclusion237Acknowledgement24
2R.Guillier,L.Hablot,P.Primet1IntroductionToday,mostdatatransferapplicationsandabout90%oftheInternettrafcusetheTCPprotocol.TCPhasshownagreatscalabilityinnumberofusers,butnotinlinkcapacity.TheTCPperformancecanbeverylowandunstableindata-centerapplications,gridcomputingapplications,interactivecommunicationswithinhighspeedlongdistancenetworksinfrastructureslikebbertohome(FTTH)orlambdagridsenvironments.TheconservativebehaviourofTCPwithrespecttocongestioninIPnetworksisattheheartofthecurrentperformanceissuesfacedbythehigh-performancenetwork-ingcommunity.Severaltheoreticalandexperimentalanalysishaveshownthatthedynamicsofthetraditionalfeedbackbasedapproachistooslowinveryhighspeednetworksthatmaylosepackets.Consequentlynetworkresourceutilisationisnotoptimalandtheapplicationperformanceispoorandmaybedisappointing.Manyhigh-endcomputingapplicationswishtotransferlargevolumesofdataoverwideareanetworksandrequirehighdataratesinordertodoso.However,theseapplicationsarerarelyabletotakefulladvantageofthehigh-capacity(2.5Gbps,10Gbpsandupwards)networksinstalledtoday.DatafromInternet2showthat90%ofthebulkTCPows(denedastransfersofatleast10MBofdata)uselessthan5Mbps,andthat99%uselessthan20Mbpsoutofthepossible622Mbpsprovision.Therearemanyreasonsforsuchpoorperformance.Manyoftheproblemsaredirectlyrelatedtotheendsystem,totheprocessorandbusspeed,andtotheNICwithitsassociateddriver.TCPconguration(e.g.smallbufferspace)hasalsoasignicantimpact.Butwhentheseproblemsarexed,thecongestioncontrolalgorithmisoneofthekeycomponentwhichhastobemodiedtoalleviatetheperformanceprobleminhighspeedlongdistancenetworksenvironments.Congestioncontrolisthemostimportantandcomplexpartofatransportprotocolinpacketswitchsharednetwork.TCPprovidesafullydistributedcongestioncontrolprotocolwhichstatisticallyshareavailablebandwidthamongowsfairly.TCPwasdesignedrstandforemsottoberobustandwhencongestionisdetected,TCPsolvestheproblembutattheexpenseofperformance.Forexample,forastandardTCPconnectionwith1500-bytepacketsanda100msround-triptime,achievingasteady-statethroughputof10Gbpswouldrequireanaveragecongestionwindowof83,333segments,andapacketdroprateofatmostonecongestioneventevery5,000,000,000packets(orequivalently,atmostonecongestioneventevery12/3hours).Tosolvethisproblemseveralprotocolsenhancementshavebeenproposed[WHVBPa05,SL04,XHR04].Alltheseprotocolsarenotequivalentandnotsuitedforallenvironments.SomeoftheprotocolstargetinghighspeedInternet,attempttoimproveTCPresponsefunctionwhiletryingtoretainmaximumbackwardscompatibilitywithlegacyimplementations.Othersfocusondifferenttargetenvironments,forexamplededicatedopticalnetworks.TheyarelessconservativeandtheycanbeimplementedinuserspaceandoverUDP.Sinceacoupleofyears,theevaluationandcomparisonoftheseprotocolsreceiveanincreasingamountofinterest.However,TCPandotheralternativesarecomplexprotocolswithmanyuser-congurableparametersandarangeofdifferentimplementations.Severalaspectscanbestudiedandvarioustestingmethodsexist.Theresearchcommunity1recogniseitisimportanttodeploymeasure-mentmethodssothatthetransportservicesandprotocolscanevolveguidedbyscienticprinciples.Researchersanddevelopersneedagreed-uponmetrics-acommonlanguageforcommunicatingre-sults,sothatalternativeimplementationscanbecomparedquantitatively.Usersofthesevariantsneedperformanceparametersthatdescribeprotocolcapabilitiessothattheycandevelopandtunetheirapplications.Protocoldesignersneedexamplesofhowuserswillexercisetheirservicetoimprovethedesign.Thegoalofthisreportisthentocontributetothiseffortandpresentsomestepstowardsa1Seattleworkshop,February2007
BenchmarkforTransportProtocols3user-orientedbenchmarkdesignforhighspeedtransportprotocolscomparison.Therestofthereportisorganisedasfollows.RelatedworksandongoingeffortsarereviewedinSection2.Section3denesthenotionofbenchmarkandintroducesafewexamplesofsuchtools.Section4introducesthemetrics,parametersandmeasurementmethodsconstitutingourbench-markpropositionfortransportprotocols.Section5illustratesthisproposalwithpreliminaryresultsobtainedonourexperimentalenvironment,Grid'5000,wehavebuiltandareusingforcontributinginthisbenchmarkdesign.Finally,weconcludeinSection6andproposesomeperspectivesforprotocolandnetworkserviceenhancement.2RelatedworkHighSpeedtransportprotocoldesignandevaluationisahotresearchtopic[VBTK06].WerstoverviewandclassifyproposedalternativestoTCPandthensurveyseveraleffortstowardsasystem-aticevaluationoftheseproposals.2.1TransportprotocolsforhighspeednetworksTherecentalternativestoTCP,dedicatedtohighspeedInternet,aimatsolvingtheproblemofthepoorresponsefunctionofTCPinlargebandwidth-delayproductnetworksbymodifyingtheparameters,αfortheincreaseandβforthedecrease,oftheAdditiveIncreaseMultiplicativeDecrease(AIMD)algorithmthatisusedduringthecongestionavoidancephaseofTCP.ForexampleHighSpeedTCP[Flo03]andScalableTCP[Kel03]increasetheaggressivenessinhigh-performancecontextswhiletryingtostayfairtostandardTCPowsinlegacycontexts.Table2summarisestheAIMDvaluesthatareusedbydifferentTCPvariants.In[PFTK98],Padhyeetal.presentasimpleTCPmodeltoexpressthethroughputasafunctionoftheRTT,segmentsize,AIMDconstantsandlossprobability:qMSSq(1)RTT23p+RTO338pp(1+32p2)3SSMthatcanbereducedtorR=RTT2p(2)ifweassumethatthelossrateissmall(typicallythecaseintheopticalnetworksthatformsthebackboneofmostgrids/datacenters).ThesamekindofapproachhasbeenmadeforthenewTCPvariants[Xu07]andsimilarexpressionsexist.Table1providesanapproximatevalueofthecanddparametersconsideringthatalltheformulaareintheformcSSMR=RTTpd(3).H-TCPissupposed[SL04]tohavethesameresponsefunctionasHighSpeedTCP.CUBICisnotincludedintheTable1asitsresponsefunctiondoesn'ttintheformula.BychoiceoftheAIMDconstants,ithasthesameresponsefunctionasTCPRenoforasmallcongestionepoch/BDPvaluetoensureitsfairnesswithrespecttothisprotocol.TheseresponsefunctionsprovideaninsightoftherelativeperformanceofeachTCPvariantsforagivenBDPvalue,butthismodeldoesn'tcaptureanumberofcharacteristicsofrealnetworkslikereversetrafcormultiplexing.ManyoftheseTCP
4TCPvariantcdTCPReno1.220.5BIC15.50.5HighSpeedTCP0.120.835Scalable0.081.0R.Guillier,L.Hablot,P.PrimetTable1:TCPvariants'responsefunctionparametersTCPvariantαβTCPReno121BIC1orbin.search81CUBICcub(cwnd,history)51HighSpeedTCPinc(cwnd)decr(cwnd)HamiltonTCPf(lastloss)1RRTTTTmmainxScalableTCP0.01cwnd81Table2:TCPvariants'AIMDconstantsvariantsareavailableinallrecentLinuxkernel:HighSpeedTCP[Flo03],ScalableTCP[Kel03],Hamilton-TCP[SL04],BIC[XHR04],CUBIC[RX05]andtheycanbeusedbyeveryone.TCPVegas[BOP94]andFAST-TCP[DXWH07]useothercongestioninformationavailable(round-triptimevariations,ExplicitCongestionNotication,etc)toregulatethroughputatthesenderendandthusnelycontrolbufferllinginrouters,managingIPcongestinooptimally.XCPgoesfurtherfromtoday'sstandards,proposinganewcooperativecongestioncontrolschemefeaturingaprecisecongestionwindowindicationgoingfromrouterstoendhosts.UDT,aUDP-basedDataTransferprotocol[GG07]addresstheproblemoftransferringlargevol-umetricdatasetsoverhighbandwidth-delayproductopticalnetworks.LikesomeTCPvariantssuchas[XHR04],UDTemploysanewwindow-basedcongestioncontrolalgorithmtargetingatuncon-trolledsharednetworks.2.2EvaluationframeworksSinceacoupleofyearsseveralteamsaimatdevelopingmethodologiesandtoolsprovidingcompre-hensivestandards-compliancetestingofTCPimplementations.Inthissection,wepresentinitiativesfocusingonTCPvariantevaluation.Varioustestingmethodsexisttoevaluatetransportprotocolper-formance:realInternet,realexperimentalnetworks,emulatednetworks,simulation.Eachonehasitspitfalls.Amixofseveralmethodsishighlyrequiredtoproduceconvincingresults[All99].Toourknowledge,therealInternet,throughthePlanetlabtestbedforexample,hasnotbeenemployedtoevaluateextensivelythenewTCPvariants.Severalmethodologiesandresultshavebeenproposedby[LLS06,Flo06,HLRX06]toidentifycharacteristicsanddescribewhichaspectofevaluationsce-nariodeterminethesecharacteristicsandhowtheycanaffecttheresultsoftheexperiments.Thenextsectionscomparerelatedworksaccordingtothetypeofmethodtheyhaveadopted.
BenchmarkforTransportProtocols52.2.1EvaluationsonRealExperimentalNetworksFewrealexperimentshavebeenran[CAK+05,LLS06]toanalysethebehaviourofarangeofnewprotocolsinhighspeedInternetcontext.Otherrecentworkfocusonsharedhighspeednetworksdedicatedtohighperformancedistributedapplications[GHK+07,GSP07,GHK+06].Therealex-perimentmethodgivesarealinsightoftheprotocolbehaviourinveryhighspeedenvironment(e.g.10Gbps),explorestheinteractionswiththehardwareinfrastructureandgenerallyhelpstodebugtheglobalhardwareandsoftwarecommunicationchain.Wan-In-LabWan-In-Lab[GSLL07]isatestbedoftheCaliforniaInstituteoftechnology.Itisbuiltarounda2400kmopticbbercableandarraysofopticalswitchestoconstructnetworkswithvariablelengthandRTT.Itisaccessibletousersthroughawebinterface.Thisinterfaceallowsuserstouploadexperimentalkernels,instrumentedwiththeWeb100tools,andtorunasetofpredenedtests.Theresultsofthesetestsarethenprocessedandplacedonthewebinbothgraphicalandnumericalform.ProtocolsaretestedforRTTfairness,convergencespeedbothwithandwithoutexistinglargeows,interactionwithshortows,andfairnessbetweenowstraversingdiffreentnumbersofhops.Theyareconsideringarangeofexperimentscombiningatopologyandsomenetworkingcondi-tionstostudyinterestingcases2.Themaininterestofthistestbedisthepossibilitytoperformrealexperimentsusingreallinks(1to10Gbpsspeed)andopticalswitchesandtohaveaccesstoahugerangeofRTTs(from0to180mswith2msincrements)byconguringtheopticalswitches.Grid5000Grid'5000project[BCC+06],isanexperimentalgridplatformgathering2500proces-sorsoverninegeographicallydistributedsitesinFrance.Thenetworkinfrastructureisanintercon-nectionofLANs(i.e.gridsites)andan10Gbpsopticalvirtualprivatenetwork(VPN).AsimpliedtopologyisshowninFigure1.TheparticularityofthistestbedistoprovideresearcherswithafullyrecongurabilityfeaturetodynamicallydeployanyOSimageorTCPstackonanyendhostofthetestbedandwithafullydedicatedopticalnetwork.ThistestbedhasbeenusedforexperimentingdifferentTCPstacksandseveraltypesofworkloadcorrespondingtorealisticgridcomputinganddata-centerapplications[GHK+07,GSP07].Internet-liketrafccanalsobeinjectedinthistestbed.2.2.2EvaluationsonEmulatedNetworksDeploymentofrealnetworksiscostlyandexperimentscanbetimeconsuming.Moreover,suchtestbedshardlyproviderangeoflatenciestofullyexploreprotocolbehaviour.Forthesereasons,severalteamsadoptemulationmethodbyusingsoftwareorhardwarenetworkemulators.HamiltonUniversityframeworkWiththeirlatestexperimentsonTCP[LLS06],DoughLeithetal.presentanexperimentaltest-bed,basedaroundtheDummynet[Riz97]networkemulator.ThegoalistostudytheperformanceofvariousTCPvariantsandtoproposeofaseriesofbenchmarktestseasilyreproducible.ThetopologyusedisaclassicaldumbbellwithaDummynetrouterinthemiddletoemulatelatencyandtosetqueuesizeandbottleneckspeedAsetofscripts3,alongwiththeresultsofalargequantityofexperimentswithgraphsaremadeavailable.Theyareconsideringawiderangeofparametersincluding:queuesize,bottlenecksize,2http://wil.cs.caltech.edu/mwiki/index.php?title=Experiments3workingwithTCP-Linux[WC06],aNS-2patchtouseGNU/LinuxTCPcongestioncontrolalgorithmmodulestoperformexperiments
610 GbE Links  1 GbE LinksLilleOrsayNancyRennesR.Guillier,L.Hablot,P.PrimetnoyLGrenobleBordeauxToulouseSophiaFigure1:Grid'5000backboneRTT(16,22,42,82,162ms),asymmetricRTT,TCPvariantsandnumberofwebsessions.Theavailabletestsweredonewithtwoowsandamaxbottlenecksizeof250Mbps.NorthCarolinaStateUniversityframeworkFortheexperiments[HLRX06]andvalidationoftheirTCPvariants4,InjongRheeetal.useatestbedalsobasedonDummynet.TwoDummynetroutersareused,onetomanagetheAQMandthebandwidthlimitation,thesecondtoadddelay,formingadumbbelltopology.Thechoiceofthistopologyismotivatedbythefactthatevenamorecomplicatedtopologylikeaparkinglotfailstocapturetherealismofproductionnetworks.Thebottleneckisxedto400MbpsandtheRTTvaluesusedare16,64,162and324ms.Twokindsofbackgroundtrafcmaybeinjected:short-livedandlonglived.Theshort-livedtrafcisgeneratedwithacustomversionoftheSURGE[BC98]webtrafcgeneratorfollowing5differentkindoftrafcdistribution.Thelong-livedtrafcisgeneratedusingiperf.Theamountofbackgroundtrafcissettobeabout70Mbps(lessthan20%ofthebottleneckcapacity).Thebasicscenarioconsistsinmonitoringtheinteractionsoftwoowswhentheyareinteractingwithvariouslevelsofbackgroundtrafc.AIST-INRIAframeworkTheAISTandINRIAteamsusehardwareemulatorscombinedwithnet-workvirtualisationsoftwareeWANtoevaluateprotocolsunderdifferentlatencyandtopologycon-ditions[PTK+06].AIST-GtrcNET-10isahardwareemulatorthatallowslatencyemulationupto858mswithoutlosses,ratelimitationandprecisebandwidthmeasurementsat10Gbpswirespeed.GtrcNET-10p3isafullyprogrammablenetworktestbed,whichisa10Gbpssuccessorofawell-establishednetworktestbed,GtrcNET-1.4BICandCUBICTCP
BenchmarkforTransportProtocols72.2.3EvaluationswithNS2simulatorTMRGNS-2frameworkIntheIRTFdraft[NS207],WeiandFloydproposeaframeworkofbenchmarkingTCPvariantsbasedontheNS2networkemulator.Itdenestopologies,trafcchargesandmetricsthatcouldbeusedtoevaluatetheperformanceofTCPstacks.Currently,threetopologiesareconsidered:dumbbell(onebottleneck),parking-lot(multiplebot-tleneck)withcrosstrafcanda“simplenetwork”topologywithtransitandsbtudomains.Fourkindoftrafcmodelsareproposed:FTPtrafc(long-livedows),Webtrfac(short-livedows),videostreamingtrafc(CBRtrafcoverUDP)andvoicetrafc(CBRorON/OFFows).MetricsdenedintheTRMG'smetricsdraft[Flo07]areconsidered:throughput,queueingdelay,jitter,lossrate,responsetime,fairness,convergenceandrobustness.Eachkindofmetricsisadaptedtothetraf-cmodelitiscurrentlytryingtomeasure.Astheyaredescribingaframework,theydon'tprovideexplicitscenariithatmightbeinterestingtorun.PolitecnicodiBaristudiesMascoloin[MV06]isusingNS-2simulationstoobservetheimpactofreversetrafconthenewTCPcongestioncontrolalgorithms.Thetestbedisbasedonadumbbelltopologywithatmost6differentsources/destinations.Thebottlenecksizeis250Mbpsandisalsosharedbytwonetworkstransmittingwebtrafc.Heismainlyfocusingontheproleoftheworkloadsthatareappliedtothesystem(on/offreversetrafc,reversetrafc+webtrafc,reversetrafc+webtrafc+differentRTTs).HeisusingthefollowingRTTsvalues:40,80and160ms.Themetricsusedtoanalysetheresultsaremainlylinkutilisation,goodput,congestionwindowsizeandtimeoutsevents.Thisshortoverviewshowsthatsoftwaretestbeds(simulatorsoremulators)enablecomplextopolo-gies,largenumberofowsexperimentsbutthebottleneckcapacityislimitedto400Mbpsandthelatenciesto400ms.Hardware-basedtestbedsgiveresearchersaccessto10Gbpsandupto800mslatenciesbutpresentsomelimitationintopologiescomplexity.3DenitionandgoalsofaTransportBenchmarksuite3.1Whatisabenchmark?Abenchmarkisaprogramorasetofprograms,whichcalculatetherelativeperformanceofamachineoranarchitecture(hardware),oranotherprogram(software).Eachbenchmarkmayeitherfocusonquantity(executionspeed,amountofdatacomputed,etc.)oronquality(robustness,security,etc.).Benchmarkcanbeexecutedattwodifferentlevels:lowlevelormicrobenchmarks:Testingtheperformanceofoneparticularcomponentorfunc-.noitapplicationlevel:Aimingatrepresentingtypicalapplications/workloadsofaplatformthatneedsevaluation.AmongtheexistingHighPerformanceComputing(HPC)benchmarks,theNASParallelBenchmark(NPB)[FY02]iswellknown.Thissetofprogramsrepresentsthetypicalapplicationsclassesexecutedonclusters.3.2ExampleoftheNPBanditsusage(InBTH,PCCG,,thEeP,NFPTB,I[SF,YL0U2,]iMsGaacnodmSmPo)ntlhyatusgeidvebseancghomodarpk.anTelheofNthPeBdiisffaergernotupparoaflleeilgahtppplriocagtriaomnss
Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text