192
pages
English
Documents
2005
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe et accède à tout notre catalogue !
Découvre YouScribe et accède à tout notre catalogue !
192
pages
English
Documents
2005
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Publié par
Publié le
01 janvier 2005
Nombre de lectures
8
Langue
English
Poids de l'ouvrage
3 Mo
Publié par
Publié le
01 janvier 2005
Langue
English
Poids de l'ouvrage
3 Mo
Topical delivery of
α -Antichymotrypsin 1
for wound healing
Dissertation
zur Erlangung des Doktorgrades der
Fakultät für Chemie und Pharmazie der
Ludwig-Maximilians-Universität München
vorgelegt von
Roland Schmidt
aus Treuchtlingen
München 2005
Erklärung
Diese Dissertation wurde im Sinne von § 13 Abs. 3 und 4 der Promotionsordnung vom
29. Januar 1998 von Herrn Prof. Dr. G. Winter betreut.
Ehrenwörtliche Versicherung
Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet.
München, 01. Januar 2005
(Roland Schmidt)
Dissertation eingereicht am: 10. Januar 2005
1. Berichterstatter: Prof. Dr. G. Winter
2. Berichterstatter: Prof. Dr. W. Frieß
Tag der mündlichen Prüfung: 1. Februar 2005 ACKNOWLEDGMENTS
Foremost, I wish to express my deepest appreciation to my supervisor, Prof. Dr.
Gerhard Winter. I am much obliged to him for his professional guidance and his
scientific support. On a personal note, I especially want to thank him for inspiring
my interest in protein pharmaceuticals, for teaching me so much, and for creation
of an outstanding working climate.
I am also grateful to the Switch Biotech AG, Neuried, Germany for financial
support. I would like to acknowledge Dr. Uwe Goßlar for rendering every
assistance and the always professional and personally warm contact. Moreover, I
would like to thank Annette, Björn, and especially Olivia for performing the
Bioassays.
Thanks are also extended to Prof. Dr. Bracher, Prof. Dr. Frieß, PD Dr. Paintner,
Prof. Dr. Schlitzer, and Prof. Dr. Wagner for serving as members of my thesis
advisor committee.
I very much enjoyed working at the Department for Pharmaceutical Technology
and Biopharmaceutics of the Munich Ludwig-Maximilians-University, what was
mainly due to the cooperative and most convenient atmosphere. Wolfgang, Silke,
Sandra, Iris, Steffi, Fritz, Ingo and all the others, it was a pleasure to work with you.
To my parents Table of contents
1 Introduction 1
1.1 Wound healing 3
1.1.1 Physiology of wound healing 3
1.1.1.1 Wound healing process 3
1.1.1.2 Growth factors in physiological wounds 8
1.1.1.3 Proteases in physiological wounds 12
1.1.1.4 Protease inhibitors in physiological wounds 15
1.1.2 Pathophysiology of chronic wounds 18
1.1.2.1 Cellular and biochemical imbalance in chronic wounds 19
1.1.2.2 Clinics of chronic wounds 20
1.1.2.3 Infection of wounds 21
1.1.3 Treatment of chronic wounds 21
1.1.3.1 Debridement 22
1.1.3.2 Moist wound treatment 3
1.1.3.2.1 History of moist wound treatment 23
1.1.3.2.2 Effects of moist wound treatment 3
1.1.3.2.3 Products for moist wound treatment 4
1.1.3.3 Infection control in wounds 25
1.1.3.4 Skin substitutes for wound healing 6
1.1.3.5 Growth factors control in chronic wounds 26
1.1.3.6 Protease control in chronic wounds 27
1.1.3.6.1 Active dressings for chronic wounds 8
1.1.3.6.2 Delivery of ACT in chronic wounds 8
1.2 Protein delivery from hydrogel formulations 30
1.2.1 Suitability of hydrogels for protein delivery 31
1.2.2 Protein delivery from hydrogels 32
1.2.2.1 Application in wounds 32 1.2.2.2 Transdermal delivery 33
1.2.2.3 Oral delivery 4
1.2.2.4 Ophthalmic delivery 5
1.2.2.5 Delivery by injection and general approaches 35
1.2.3 Summary 37
1.3 Aim of the thesis 39
2 Materials and Methods 41
2.1 41
2.1.1 α1-Antichymotrypsin (ACT) 41
2.1.2 Excipients and chemicals 42
2.13 Polymers 3
2.1.3.1 Cellulose ethers 3
2.1.3.2 Gellan gum 3
2.1.3.3 Other polymers 4
2.2 Methods 45
2.2.1 Characterisation of ACT 45
2.2.1.1 ACT activity assay 45
2.2.1.2 ACT ELISA 5
2.2.1.3 Gel electrophoresis 6
2.2.2 Manufacture of matrices 46
2.2.2.1 Wet film manufacture with the scraper 46
2.2.2.2 Freeze-drying 46
2.2.2.3 Warm air drying 47
2.2.3 Characterisation of matrices 47
2.2.3.1 Viscometry 7
2.2.3.2 Mechanical tests 7
2.2.3.3 In vitro Release tests 8
2.2.3.4 Karl Fischer Titration 8
2.2.3.5 Differential scanning calorimetry (DSC) 48 2.2.3.6 X-ray diffraction 49
3 Results and Discussion 50
3.1 Analytical tools for the characterisation of ACT 51
3.2 Stabilisation of ACT in solution 52
3.2.1 Effects of pH, buffers, and electrolytes on ACT solution stability 52
3.2.1.1 Effect of pH on ACT solution stability 52
3.2.1.2 Effect of buffer species on ACT solution stability 56
3.2.1.3 Effect of salts on ACT solution stability 7
3.2.1.4 Effect of buffer content on ACT solution stability 8
3.2.1.5 Summary of the effects of electrolytes on ACT solution stability 60
3.2.2 Effects of stabilisers and excipients on ACT solution stability 61
3.2.2.1 Surfactants for the stabilisation of ACT in solution 61
3.2.2.2 Sugars and polyols for the stabilisation of ACT in solution 63
3.2.2.3 Cyclodextrins for the stabilisation of ACT in solution 65
3.2.2.4 Amino acids for the stabilisation of ACT in solution 8
3.2.2.5 Preservatives for ACT containing solutions 70
3.2.3 Summary of ACT solution stability studies 71
3.3 Hydrogels as delivery system for ACT into wounds 72
3.3.1 Development as delivery system for wound healing 72
3.3.1.1 Sterilisation of hydrogels 73
3.3.1.2 Viscosity of hydrogels 73
3.3.1.3 Viscosity of gellan gum/hydroxyethyl cellulose hydrogels 76
3.3.2 Stability of ACT in hydrogel formulations 80
3.3.2.1 Effects of polymers on ACT stability in hydrated formulations 80
3.3.2.2 Aseptic manufacture of ACT loaded hydrogels 83
3.3.2.3 Analysis of ACT loaded hydrogels 85
3.3.2.4 Mid term stability of ACT in hydrogel formulations 5
3.3.2.4.1 Principles of data interpretation 6
3.3.2.4.2 Experimental results and discussion 90 3.3.2.4.3 Summary 93
3.3.2.5 Freeze/thaw stability of ACT in hydrogel formulations 93
3.3.3 Summary of hydrogels as ACT delivery systems 94
3.4 Dry delivery systems 95
3.4.1 Xerogels as drug delivery systems for wound healing 96
3.4.1.1 Lyophilisation process 96
3.4.1.1.1 DSC studies 97
3.4.1.1.2 Lyophilisation program 97
3.4.1.2 Gel composition for xerogel formation 100
3.4.1.2.1 Hydroxyethyl cellulose qualities for xerogel formation 101
3.4.1.2.2 Excipients in hydroxyethyl cellulose xerogels 103
3.4.1.2.3 Hydroxyethyl cellulose/gellan gum mixtures for xerogels 108
3.4.1.2.4 Other polymers for xerogel formation 109
3.4.2 Stability of ACT in xerogel formulations 112
3.4.2.1 Stability of ACT during the lyophilisation process 112
3.4.2.2 Mid term stability of ACT in xerogel formulations 115
3.4.2.2.1 Principles of data interpretation 116
3.4.2.2.2 Experimental results and discussion 118
3.4.2.2.3 Summary 121
3.4.3 Polymer films as drug delivery systems for wound healing 122
3.4.3.1 Production process 122
3.4.3.2 Gel composition for polymer film formation 124
3.4.3.2.1 Gelling agents for film formation 124
3.4.3.2.2 Polymers as additives to hydroxyethyl cellulose films 125
3.4.3.2.3 Hydroxyethyl cellulose / gellan gum mixtures for film formation 132
3.4.3.2.4 Protein stabilisers in polymer films 134
3.4.4 Stability of ACT in film formulations 135
3.4.4.1 Stability of ACT during the film manufacturing process 136
3.4.4.2 Mid term stability 138
3.4.4.3 Summary 141 3.4.5 Summary for dry matrices as ACT delivery systems 141
3.5 Release of ACT from dry delivery systems 143
3.5.3 Experimental setup 143
3.5.3.1 Membrane 143
3.5.3.2 Acceptor medium 144
3.5.3.3 Chamber model 145
3.5.4 Theoretical background and data interpretation 146
3.5.5 Release of model substances from gel based matrices 147
3.5.6 Release of ACT from formulations 151
3.5.6.1 Dynamic model 151
3.5.6.2 Static model 153
3.5.6.2.1 Evaluation of the model 153
3.5.6.2.2 Release of ACT from xerogel formulations 157
3.5.6.2.3 Release of ACT from film formulations 161
3.5.6.2.4 Summary 166
4 General summary 167
5 References 171
Curriculum vitae 183
Chapter 1 - Introduction
1 Introducti