Structure génétique et variation physiologique chez Cerastoderma glaucum (Bivalvia) vivant dans des conditions environnementales différentes, Genetic structure and physiological variation of a widespread European lagoon specialist Cerastoderma glaucum (Bivalvia) living in extreme environmental conditions

icon

231

pages

icon

Français

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

231

pages

icon

Français

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Sous la direction de Anne Chenuil, Jean-Pierre Feral, Maciej Wolowicz
Thèse soutenue le 25 mars 2010: Uniwersytet gdański, Aix Marseille 2
Cette thèse de doctorat est un projet franco-polonais en co-tutelle entre le Département du Fonctionnement des Ecosystèmes Marins (l'Université de Gdansk, Pologne) et le laboratoire DIMAR (l'Université de la Méditerranée, France). La variation physiologique et la structure génétique des populations d’une espèce lagunaire, le bivalve, Cerastoderma glaucum, ont été étudiées. C. glaucum est une espèce sessile avec une phase larvaire planctonique. Elle est présente surtout dans les bassins isolés ou semi-isolés sans marée, comme les lagunes, les estuaires, les baies et les lacs. Ces habitats sont extrêmes de par des changements de conditions environnementales à court terme plus importants que dans le milieu marin. Ils sont souvent isolés, le flux de gènes est limité et des adaptations locales sont attendues. C. glaucum a révélé une forte variabilité des paramètres morphométriques et physiologiques entre les 3 populations de la Mer Baltique, la Mer du Nord et la Méditerranée. Les coques de la Mer Baltique sont beaucoup plus petites que celles des autres populations et leur taux de respiration est le plus élevé, ce qui est probablement provoqué par le stress osmotique. Les populations de l’Europe du nord ont un pattern de la reproduction monocyclique, tandis que la population de la Méditerranée peut se reproduire tout au long de l’année. Les changements saisonniers dans la composition biochimique sont corrélés avec les changements de condition trophique et avec le cycle reproductif. Les taux de respiration élevés dans les populations du nord de l’Europe au printemps et en automne ont pu être provoqués par le développement des gonades (au printemps) ou par le bloom de phytoplancton (au printemps et en automne). La structure génétique de C. glaucum a été étudiée avec 4 loci microsatellites et des séquences de 514 pb de l’ADN mitochondrial (région COI). Les deux types de marqueurs ont révélé une forte différentiation entre populations, probablement due à la fragmentation de l’habitat de cette espèce. La division en deux espèces ou sous-espèces, atlantique et méditerranée, devra être abandonnée, car la division principale au sein de C. glaucum a été trouvée dans la région de la Mer Ionienne. Les positions géographiques des divisions principales qui viennent de deux types de marqueurs étaient différentes. Selon l’ADN mitochondrial la Mer Egée et la région ponto-caspienne s’opposent aux populations plus à l’ouest. Les données nucléaires, en revanche, montrent que les populations de la Mer Ionienne sont les plus divergentes du reste des populations ou que leur l’ADN nucléaire a une origine ponto-caspienne. Un signal de sélection positive a été détecté sur l’un des loci microsatellites (Cg11) dans la Mer Ionienne. Les structures génétiques des populations de la Mer Ionienne et de la Tunisie suggèrent que dans ces localités les cycles climatiques ont provoqué beaucoup moins (voire aucune) diminution de la diversité génétique qu’ailleurs, qui pourraient représenter des centres d’origines de cette espèce. Deux discontinuités géographiques inattendues ont été trouvées avec l’ADN mitochondrial. Les oiseaux migrateurs pourraient jouer un rôle important dans la colonisation postglaciaire et représenter un moyen de dispersion entre les lagunes isolées. A cause de l’isolement des habitats de la coque, la dispersion de cette espèce par des larves planctoniques semble peu probable. Les différences dans les structures génétiques relevées par les deux génomes ont pu être provoquées par un balayage sélectif dans l’ADN mitochondrial, une dispersion différentielle entre sexes, un sex-ratio biaisé ou de l’introgression différentielle. La grande différentiation trouvée entre les deux groupes principaux suggère que la taxonomie de Cerastoderma devra être révisée, mais à cause des possibilités d’hybridation il peut être difficile de définir les taxa. Les adaptations locales sont théoriquement possibles chez la coque puisque le flux de gènes est limité. Néanmoins, une grande plasticité phénotypique est indispensable face aux brusques changements environnem
-Cerastoderma glaucum
-ADN mitochondrial
-Microsatellites
-Refuge glaciaire
This PhD is a Polish-French project between the Department of Marine Ecosystems Functioning (University of Gdansk, Poland) and DIMAR laboratory (Université de la Méditerranée, France). Physiological variation and genetic structure of the populations of lagoon specialist, the bivalve, Cerastoderma glaucum, have been studied. C. glaucum is a sessile species with a planctonic larval stage. It inhabits mainly non-tidal areas, like lagoons or brackish lakes. Those habitats are extreme, because they are much more subject to short-term variations in environmental conditions than marine habitats. They are also often isolated and as a consequence the gene flow among populations is limited and local adaptations are expected. The lagoon cockle revealed a strong interpopulation variability of morphometric and physiological parameters among 3 populations studied: from the Baltic Sea, the North Sea, and the Mediterranean Sea. The cockles from the Baltic Sea were much smaller than those from other populations and they exhibited the highest respiration rate, probably due to osmotic stress. The populations from the northern Europe had a monocyclic reproductive pattern, whereas the Mediterranean population seemed to reproduce throughout the year. Seasonal changes in biochemical components contents appeared to be correlated with changes in trophic conditions and the reproductive cycle. High respiration rates in populations from the northern Europe in spring and autumn could have resulted from gamete development (in spring) and phytoplankton blooms (in spring and autumn). The genetic structure of C. glaucum was studied from four nuclear microsatellite loci and sequences from a 514 bp mitochondrial DNA (COI region). Both marker types revealed strong differentiation among populations that was likely due to the highly fragmented distribution of this species. The subdivision into Atlantic and Mediterranean species or subspecies should definitely be abandoned as the main subdivision within C. glaucum was found in the region of the Ionian Sea. The geographic location and strength of the major divisions were different between the genomes. The deepest phylogeographic split in mtDNA grouped Aegean Sea and Ponto-Caspian region populations against the more western populations, whereas nuclear data singled out Ionian Sea populations or indicated a Ponto-Caspian character of nuclear DNA from the Ionian Sea. A possible selection event was detected on one of the microsatellite loci (Cg11) in the Ionian Sea. Genetic structures found in the Ionian Sea and in Tunisia suggest that these regions remained unaffected by glacial events, and the Ionian Sea may be a core distribution area for C. glaucum, from where it spread into other European seas. Two unexpected geographic disjunctions were detected in mitochondrial identity of populations. They led us to suggest long-distance dispersal via migrating birds to have contributed to the postglacial spread of C. glaucum. The habitats isolation makes the dispersal by planktonic larval stage not very probable. The discrepancies between the two genomes may have been provoked by selective sweeps in mtDNA, sex-biased dispersal, biased effective sex-ratio or differential introgression. The high level of differentiation found between the main genetic groups led us to conclude that the taxonomy of Cerastoderma needs revision, but we acknowledge that due to hybridization the taxa can be occasionally impossible to delineate. There is probably a considerable degree of adaptation to different environmental conditions among isolated populations of C. glaucum, but also a high level of phenotypic plasticity to cope with rapid changes of environmental conditions.
Source: http://www.theses.fr/2010AIX22001/document
Voir icon arrow

Publié par

Nombre de lectures

113

Langue

Français

Poids de l'ouvrage

12 Mo

UNIVERSITÉ DE LA MÉDITERRANÉE, FRANCE
Centre d'Océanologie de Marseille
Unité Mixte de Recherche CNRS 6540 - DIMAR
Diversité, Évolution et Écologie Fonctionnelle Marine
UNIVERSITÉ DE GDANSK, POLOGNE
Institute of Oceanography
Department of Marine Ecosystems Functioning
THÈSE DE DOCTORAT
Spécialité Biosciences de l'Environnement
présentée par
Katarzyna TARNOWSKA
Genetic structure and physiological variation of a widespread European
lagoon specialist Cerastoderma glaucum (Bivalvia)
living in extreme environmental conditions
Soutenue le 25 mars 2010










Jury :
Anne Chenuil, Chargée de recherche, CNRS, Marseille (Directrice de thèse)
Jean-Pierre Féral, Directeur de recherche, CNRS, Marseille (Directeur de thèse)
Maciej Wołowicz, Professeur, Université de Gdask, Gdask, Pologne (Directeur de thèse)
Sophie Arnaud-Haond, Chargée de recherche, IFREMER, Brest (Rapporteur)
Herman Hummel, Professeur, Netherlands Institute of Ecology, Yerseke, Pays-Bas
(Rapporteur)
Philippe Borsa, Chargé de recherche, IRD, Montpellier (Examinateur)
Didier Forcioli, Maitre de conférence, Université de Nice Sophia Antipolis, Nice
(Examinateur)
Jerzy Sell, Professeur, Université de Gdask, Pologne (Président, Examinateur)

TO MY PARENTS
1ACKNOWLEDGEMENTS
First of all, I would like to thank the Director of the Department of Marine
Ecosystems Functioning at the University of Gdask, Prof. Maciej Wołowicz and
the Director of DIMAR (“Diversité, évolution et écologie fonctionnelle marine”)
laboratory at the Université de la Méditerranée Dr Jean-Pierre Féral for accepting me as a
PhD student in Your research teams and enabling me to work on this PhD project. I would
like to thank my supervisors: Dr Anne Chenuil and Dr Jean-Pierre Féral and Prof. Maciej
Wołowicz for sharing Your valuable experience and all the support and encouragement
You gave me. I appreciate Your contagious excitement for my work and the criticism at
the moments, when it was needed. Special thanks to Dr Anne Chenuil for a lot of patience
and help while showing me the fascinating world of molecular biology.
I would like to thank:
• Dr A. Rogers from the Zoological Society of London for sharing microsatellite
primers sequences, which enabled me to enrich my work a lot,
• all the people who contributed to samples collection: E. Egea, J.-P. Féral,
H. Hummel, J. Jansen, B. Kelemen, T. Kevrekidis, A. Kiewro, M. Krakau, S. Krupiski,
R. Lasota, M. Machado, C. Marschal, A. E. Mogias, G. Sara, R. Sussarellu, J. Zaouali,
H. Zibrowius,
• J. Jansen, H. Hummel, O. Van Hoesel from The Netherlands Institute of Ecology
(NIOO-KNAW) in Yerseke for helping me when I was investigating physiological
parameters of C. glaucum from the North Sea,
• all the people who helped me somehow at the different stages of my work,
especially: R. Nikula, A. Green, J. Drzazgowski, K. Jaworski, K. Bradtke and the staff of
the research vessel "Oceanograf II",
• all the colleagues from the laboratories both in Poland and in France, especially:
Kenza, Emilie, Didier, Karolina, Magda, Jean-Baptiste, Justyna, Michał, Pierre-Alexandre,
Iwona, Adam, Defne, Karin, Rafał. You gave me a lot of help and advice and You also
brought some light and smile to my long days at work,
• R. Lasota, D. Rush, A. Putteeraj, J. Zieliski and J. Dunder for editorial and
language corrections and suggestions.
2I would like to acknowledge the provisions of the French government studentship,
which enabled me to work on this Polish-French PhD project and the financial support
from: the Ministry of Science and Higher Education in Poland (project number: N304 047
32/2162) and the University of Gdask in Poland (project number: BW/13A0-5-0089-6).
This research was performed in the frame of MarBEF (Marine Biodiversity and
Ecosystem Functioning EU Network of Excellence) GBIRM (Genetic Biodiversity
Responsive Mode) Project. MarBEF is funded by the European Union within the
“Sustainable development, global change and ecosystems” RTD Programme (Contract no.
GOCE-CT-2003-505446 2004-2009). I am very grateful for the possibility to participate in
this project and for all the fruitful meetings.
I would also like to thank:
• my Mum and Dad. You always let me follow my own path in life. Thank you for
your endless love, patience and support. You taught me to work hard and not to be afraid
to reach far,
• my friends, You went with me through all ups and downs. If it hadn’t been for your
support, I wouldn’t have made it,
• Fabien, for giving me a lot of support and motivation in the last, the most difficult
part of this PhD,
• many others who are not mentioned here, but helped me a lot.
3CONTENTS
1 Introduction ..................................................................................................................... 8
1.1 Goals of the study .................................................................................................... 8
1.2 Outline of the thesis ................................................................................................. 9
2 Lagoons ........................................................................................................................... 9
2.1 Lagoon habitats ....................................................................................................... 9
2.2 Colonization and gene flow in lagoon habitats ..................................................... 10
3 Basic information on Cerastoderma glaucum .............................................................. 13
3.1 Distribution and ecological preferences ................................................................ 13
3.2 Life history ............................................................................................................. 14
3.3 Diet ......................................................................................................................... 15
3.4 On taxonomy, divergence and fossil record of C. glaucum ................................... 15
3.5 Distinguishing between C. glaucum and C. edule ................................................. 18
Chapter I: Studies on morphometry and physiology of Cerastoderma glaucum ................ 22
4 Interest in studying physiological responses of C. glaucum ......................................... 22
5 Materials and methods .................................................................................................. 24
5.1 Sampling and hydrological conditions of sampling sites ...................................... 24
5.1.1 Hydrological conditions in the Gulf of Gdask .............................................. 26
5.1.2 Hydrological conditions in the Lake Veere .................................................... 27
5.1.3 Hydrological conditions in the Berre Lagoon ................................................ 29
5.2 Morphometric and physiological analysis ............................................................. 31
6 Results ........................................................................................................................... 33
7 Discussion ..................................................................................................................... 38
7.1 Environmental conditions ...................................................................................... 38
7.2 Morphometric parameters and condition index .................................................... 39
7.3 Reproduction .......................................................................................................... 40
7.4 Gross biochemical composition ............................................................................. 41
7.5 Respiration ............................................................................................................. 43
8 Conclusions ................................................................................................................... 44
Chapter II: Phylogeography of Cerastoderma glaucum ...................................................... 45
9 Theoretical background ................................................................................................ 45
9.1 Factors influencing genetic structures in marine species ..................................... 45
9.1.1 Role of glaciations in genetic structures of marine species............................ 45
9.1.2 Dispersal modes and barriers in marine species; the case of C. glaucum ..... 46
9.2 Different properties of genetic markers applied .................................................... 49
9.3 Theoretical context of methods applied to analyze genetic data ........................... 53
9.3.1 Genetic diversity within populations .............................................................. 53
9.3.2 F-statistics ..............................................................................

Voir icon more
Alternate Text