Statistique de l'assurance, sujets spéciaux

icon

30

pages

icon

Français

icon

Documents

Écrit par

Publié par

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

30

pages

icon

Français

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

Arthur CHARPENTIER, Statistique de l’assurance, sujets speciaux, STT 6705V
Statistique de l’assurance, STT 6705 de l’assurance II
Arthur Charpentier
Universite Rennes 1 & Universite de Montreal
arthur.charpentier@univ-rennes1.fr ou ou charpentier@DMS.UMontreal.ca
http ://freakonometrics.blog.free.fr/
22 septembre 2010
1 Arthur CHARPENTIER, Statistique de l’assurance, sujets speciaux, STT 6705V
Modeliser les couts^ individuels
Les deux modeles les plus classiques permettant de modeliser les couts^
individuels de sinistre sont
{ le modele Gamma sur les couts^ individuels Yi
{ le modele log-normal sur les couts^ Y , ou plutt un modele Gaussieni
sur le logarithme des couts,^ log(Y ), la loi lognormale n’appartenant pas lai
famille exponentielle.
Pour rappel la loi Gamma admet pour densite
x
1 1= x e
f(x; ; ) =
( )
2d’esperance = et de variance = . Et la loi lognormale,
2 2(lnx ) =(2 )e
pf(x; ; ) =
x 2
2 2 2
+ =2 2 +d’esprance e et de variance (e 1)e .
2 Arthur CHARPENTIER, Statistique de l’assurance, sujets speciaux, STT 6705V
Le modele Gamma
Bien que le lien canonique de la loi Gamma soit la fonction inverse, il est plus
frequent d’utiliser un lien logarithmique. En e et, la forme multiplicative donne
des interpretations simples dans le cas des modeles multiples.
> reggamma <- glm(cout~ageconducteur,family=Gamma(link="log"),
+ data=sinistres)
> summary(reggamma)
Call:
glm(formula = cout ~ ageconducteur, family = Gamma(link = "log"),
data = sinistres)
Deviance Residuals:
Min ...
Voir icon arrow

Publié par

Nombre de lectures

166

Langue

Français

ArthurCHARPENTIER,Statistiquedelassurance,sujetsspe´ciaux,STT6705VStatistiquedel’assurance,STT6705Statistiquedel’assuranceIIArthurCharpentierUniversite´Rennes1&Universite´deMontre´alarthur.charpentier@univ-rennes1.frououcharpentier@DMS.UMontreal.cahttp://freakonometrics.blog.free.fr/22septembre20101
ArthurCHARPENTIER,Statistiquedelassurance,sujetsspe´ciaux,STT6705VMode´liserlescouˆtsindividuelsLesdeuxmode`leslesplusclassiquespermettantdemode´liserlescouˆtsindividuelsdesinistresont–lemode`leGammasurlescouˆtsindividuelsYi–lemode`lelog-normalsurlescouˆtsindividuelsYi,oupluttunmode`leGaussiensurlelogarithmedescouˆts,log(Yi),laloilognormalen’appartenantpaslafamilleexponentielle.PourrappellaloiGammaadmetpourdensite´xxα1e1f(x;α,β)=Γ(α)βαd’espe´ranceα/βetdevarianceα/β2.Etlaloilognormale,(lnxµ)2/(2σ2)ef(x;µ,σ)=π2σxd’espranceeµ+σ2/2etdevariance(eσ21)e2µ+σ2.2
ArthurCHARPENTIER,Statistiquedelassurance,sujetsspe´ciaux,STT6705VLemode`leGammaBienqueleliencanoniquedelaloiGammasoitlafonctioninverse,ilestplusfre´quentd’utiliserunlienlogarithmique.Eneffet,laformemultiplicativedonnedesinterpre´tationssimplesdanslecasdesmode`lesmultiples.>reggamma<-glm(cout~ageconducteur,family=Gamma(link="log"),+data=sinistres)>summary(reggamma)C:llaglm(formula=cout~ageconducteur,family=Gamma(link="log"),data=sinistres)DevianceResiduals:Min1QMedianxaMQ3-3.6322-0.9769-0.6110-0.391752.59933
ArthurCHARPENTIER,Statistiquedelassurance,sujetsspe´ciaux,STT6705VCoefficients:EstimateStd.ErrortvaluePr(>|t|)(Intercept)8.1806430.20800939.328<2e-16***ageconducteur-0.0104400.004383-2.3820.0172*---Signif.codes:0***0.001**0.01*0.05.0.11(DispersionparameterforGammafamilytakentobe109.7107)Nulldeviance:46482on26443degreesoffreedomResidualdeviance:45637on26442degreesoffreedomAIC:458704NumberofFisherScoringiterations:9Sions’inte´resselavaleurpre´ditepourunepersonned’aˆgeageconducteur=50,onobtient4
ArthurCHARPENTIER,Statistiquedelassurance,sujetsspe´ciaux,STT6705V>predict(reggamma,newdata=data.frame(ageconducteur=50),+type="response")12118.8795
ArthurCHARPENTIER,Statistiquedelassurance,sujetsspe´ciaux,STT6705VLemode`lelognormalLare´gressionlognormalepeuteˆtreobtenueenconside´rantunere´gressionline´aire(Gaussienne)surlelogarithmeducouˆt,log(Yi)=X0iβ+εiavecεi∼N(02).Eneffet,parde´finitiondelaloilognormale,YLN(µ,σ2)sietseulementsilogY∼N(µ,σ2).Leprincipalsoucisdanscete´critureestque2E(Y)=expµ+σ6=exp(µ)=exp[E(logY)]2Var(Y)=exp2µ+σ2expσ216=exp(σ2)=exp[Var(logY)]Autrementdit,ilserade´licatdepasserdesestimationsfaitespartirdumode`lesurlogYdespre´dictionssurlecouˆtY.Unere´gressionsurlelogarithmedescouˆtsdonneraitparexemple,>reglm<-lm(log(cout)~ageconducteur,data=sinistres)>summary(reglm)6
ArthurCHARPENTIER,Statistiquedelassurance,sujetsspe´ciaux,STT6705V:llaClm(formula=log(cout)~ageconducteur,data=sinistres)Coefficients:EstimateStd.ErrortvaluePr(>|t|)(Intercept)6.75015210.0224328300.905<2e-16***ageconducteur0.00213920.00047274.5256.06e-06***---Signif.codes:0***0.001**0.01*0.05.0.11Residualstandarderror:1.13on26442degreesoffreedomMultipleR-squared:0.0007738,AdjustedR-squared:0.0007361F-statistic:20.48on1and26442DF,p-value:6.059e-06>sigma=summary(reglm)$sigmaSions’inte´resselavaleurpre´ditepourunepersonned’aˆgeageconducteur=50,onobtient7
ArthurCHARPENTIER,Statistiquedelassurance,sujetsspe´ciaux,STT6705V>mu=predict(reglm,newdata=data.frame(ageconducteur=50))>exp(mu+sigma^2/2)11799.239Onnoteraquelesdeuxmode`lesdonnentdesre´sultatstre`ssensiblementdiffe´rents(entermedesigneparexemple).Onpeutcomparerlespre´dictionssurlaFigure1(surlaquelledesre´gressionsnonparame´triquesonte´te´superpose´es).8
ArthurCHARPENTIER,Statistiquedelassurance,sujetsspe´ciaux,STT6705VFigure1–Re´gressionslognormaleversusGamma,plique´parl’aˆgeduconducteur.u`oeloctuˆindividueltse-xe9
ArthurCHARPENTIER,Statistiquedelassurance,sujetsspe´ciaux,STT6705VLaFigure2montrelesmeˆmestypesdemode`lessil’onchercheexpliquerlecouˆtparl’anciennete´duve´hicule.Enparticulier,lacroissanceducouˆtmoyenenfonctiondel’aˆgeduve´hiculeestsurprenantecomptetenudelabaissedelacoteduve´hciulel’argus,01
ArthurCHARPENTIER,Statistiquedelassurance,sujetsspe´ciaux,STT6705VFigure2–Re´gressionslognormaleversusGamma,plique´parl’anciennete´duve´hicule.u`oeloctuˆindividuelestex-11
Voir icon more
Alternate Text