Sous-variétés spéciales des variétés spinorielles complexes, Special submanifolds of Spinc manifolds

icon

172

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

172

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Sous la direction de Oussama Hijazi
Thèse soutenue le 09 mai 2011: Nancy 1
Le sujet principal de cette thèse est d'exploiter les structures Spinc dans le but d'étudier la géométrie de certaines sous-variétés. Dans un premier temps, nous commençons par établir des résultats de base pour l'opérateur de Dirac Spinc. On donne ainsi des inégalités de type Hijazi en terme du tenseur d'énergie-impulsion. Ce tenseur intervient dans l'étude des variations du spectre de l'opérateur de Dirac et dans les équations de Dirac-Einstein. L'étude des hypersurfaces des variétés Spinc permet de mieux comprendre ce tenseur puisque ce dernier est le tenseur de Weingarten de l'immersion. Étant des structures naturelles sur les variétés homogènes de dimension 3 dont le groupe d'isométries est de dimension 4, les structures Spinc permettent d'aborder des problèmes riemanniens sur les hypersurfaces de ces variétés. En effet, on donne une correspondance de Lawson pour les surfaces à courbure moyenne constante. Finalement, on caractérise les structures complexes et CR sur une variété par les structures Spinc admettant un champ de spineurs spécial appelé un spineur pur ou bien un spineur transversal.
-Géométrie spinorielle complexe
-Tenseur d'énergie-impulsion
-Opérateur de Dirac
-Valeurs propres
-Hypersurfaces
-Géométrie extrinsèque
-Géométrie CR
In this thesis, we aim to make use of Spinc geometry to study special submanifolds. We start by establishing basic results for the Spinc Dirac operator. We give then inequalities of Hijazi type involving the energy-momentum tensor. Studying the energy-momentum tensor on a Spinc manifold is related to several geometric situations. Indeed, it appears in the study of the variations of the spectrum of the Dirac operator and in the Einstein-Dirac equation. The study of hypersurfaces of Spinc manifolds allows us for a better understanding of this tensor since it is the second fundamental form of the immersion. Being natural structures on the 3-homogeneous manifolds with 4-dimensional isometry group, Spinc structures will be investigated in the study of some Riemannian problems on hypersurfaces of these manifolds. In fact, we prove a Lawson correspondence for constant mean curvature surfaces. Finally, we characterize complex structures and CR structures by Spinc structures admitting a special spinor, called pure spinor or transversal spinor
Source: http://www.theses.fr/2011NAN10022/document
Voir icon arrow

Publié par

Langue

English

Poids de l'ouvrage

1 Mo




AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le
jury de soutenance et mis à disposition de l'ensemble de la
communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors
de l’utilisation de ce document.

D’autre part, toute contrefaçon, plagiat, reproduction
illicite encourt une poursuite pénale.


➢ Contact SCD Nancy 1 : theses.sciences@scd.uhp-nancy.fr




LIENS


Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm UFR S.T.M.I.A.
Ecole Doctorale IAEM Lorraine
Universite Henri Poincare - Nancy I
D.F.D. Mathematiques
These
presentee pour l’obtention du titre de
Docteur de l’Universite Henri Poincare, Nancy-I
en Mathematiques
par
Roger NAKAD
Sous-varietes speciales des varietes spinorielles
complexes
Soutenue publiquement le 9 Mai 2011
Rapporteur : Vestislav Apostolov Professeur, UQAM, Montreal
Membres du jury :
Rapporteur : Sebastian Montiel Professeur, Grenade
Examinateurs : Jean Pierre Bourguignon Directeur de recherche (CNRS), IHES
Professeur a l’Ecole Polytechnique
Oussama Hijazi Directeur de These, Professeur, Nancy I
Emmanuel Humbert Ma^ tre de conferences (HDR), Nancy I
Andrei Moroianu Charge de recherche (CNRS),
Ecole Polytechnique, Palaiseau
Institut Elie Cartan Nancy, Laboratoire de Mathematiques, B.P. 239, 54506 Vand uvre-les-Nancy Cedex3
Remerciements
C’est a plus d’un titre que je tiens en premier lieu a remercier mon directeur de
these, Oussama Hijazi. Son esprit critique, sa disponibilite exemplaire et son soutien
dynamique m’ont beaucoup apporte. Je lui suis reconnaissant parce qu’il m’a permis de
nouer de nombreux contacts et de mieux apprehender les di erentes facettes du metier
d’enseignant-chercheur. Le temps qu’il m’a accorde et la liberte de travail qu’il a su me
laisser m’ont permis de travailler en toute con ance et de progresser. En n, tous ses
conseils clairs ont ete pour moi de veritables atouts.
Je suis tres touche de l’honneur que Vestislav Apostolov et Sebasti an Montiel m’ont
fait en acceptant d’^etre rapporteurs. Je les remercie pour leurs suggestions qui ont per-
mis l’amelioration de ce manuscrit. Je tiens a exprimer ma profonde reconnaissance a
Sebasti an Montiel pour ses conseils, sa disponibilite et sa sympathie.
Je suis reconnaissant a Jean Pierre Bourguignon qui, malgre la charge de ses re-
sponsabilites, a accepte de faire partie du jury. Je lui presente mes vifs remerciements
pour la lecture attentive de la these. Un grand merci egalement a Andrei Moroianu et
Emmanuel Humbert pour l’inter^et qu’ils ont eu pour ce travail et pour avoir accepte de
faire partie du jury.
J’adresse mes chaleureux remerciements a toutes les personnes avec qui j’ai travaille
et collabore pendant ma these : Ola Makhoul, Rafael Hererra, Georges Habib et Julien
Roth. Un remerciement tout particulier a Julien Roth pour les moments d’humour et
son accueil a l’Universite de Marne-La-Vallee.
Je mesure la chance que j’ai eu d’avoir pu pro ter des connaissances de Mihai Paun,
Claude LeBrun, Simon Salamon, Pascal Romon, Xiao Zhang, Simon Raulot, Nicolas
Ginoux et Marie Amelie Lawn. Pour cela, je les remercie in niment.
Je tiens a remercier l’Institut Elie Cartan pour le cadre exceptionnel qu’il o re aux
doctorants. Plus particulierement, merci a tous les membres de l’equipe de Geometrie
Di erentielle pour leur disponibilite ainsi que pour les moments d’amitie. Je remercie
specialement Julien Maubon, Jean Fran cois Grosjean, Frederic Robert et Emmanuel
Humbert.
Merci egalement a tous mes camarades doctorants pour l’atmosphere conviviale et
amicale entretenue durant ces trois annees de these. Un grand merci a Safaa El Sayed
qui m’a soutenu et m’a encourage dans les moments les plus di ciles.
Je voudrais aussi temoigner toute ma reconnaissance envers la famille Valin : Chris-
tiane, Gilbert, Jean Fran cois, Patou et ma petite Maelys. Leur presence a mes c^otes
depuis mon premier jour en France (septembre 2007) a fait de moi ce que je suis. Ces
annees de these auraient ete tres di ciles sans leur accueil et leur soutien. Je ne pourrai
jamais assez les remercier.4
J’adresse egalement tous mes remerciements a toutes les personnes que j’ai ren-
contrees durant ces annees de these ou qui m’ont encourage tout au long de mon par-
cours. Je pense notamment a Jacqueline et Gilbert Sieste, Monique Alonzo, Christine
et Michel Jacquot, Nazo, Mere Virginie Feghali, Hasan Yassine, Piotr Karwasz, Joanna
Abdo, Mona Ibrahim....et j’en oublie suremen^ t. Qu’ils m’excusent.
J’ai aussi une pensee tres particuliere pour Christine Ohanian. Merci pour sa pa-
tience, ses encouragements, son amour et sa protection.
En n, je ne saurais trop exprimer ma gratitude envers ma mere, mon pere, mon frere
Roy et ma tante Amal. Ils m’ont apporte une aide precieuse dans les moments di ciles.
C’est plus qu’un merci que je leur dois.6Contents
1 Introduction to Complex Spin Geometry 47
1.1 The complex spin group and the spinor representation . . . . . . . . . . . 47
1.1.1 The complex Cli ord algebra . . . . . . . . . . . . . . . . . . . . 47
1.1.2 The spin group and the spinor representation . . . . . . 49
c1.2 The Dirac operator on Riemannian Spin manifolds . . . . . . . . . . . . 52
c1.2.1 Spin structures on manifolds . . . . . . . . . . . . . . . . . . . . 52
c1.2.2 The Levi-Civita connection on the Spin bundle . . . . . . . . . . 55
c1.2.3 The Spin Dirac Operator . . . . . . . . . . . . . . . . . . . . . . 57
c1.3 Spin structures on complex manifolds . . . . . . . . . . . . . . . . . . . 58
2 Lower Bounds 63
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
c2.2 Eigenvalue estimates of the Spin Dirac operator . . . . . . . . . . . . . 66
2.3 Conformal geometry and eigenvalue estimates . . . . . . . . . . . . . . . 68
2.4 Equality case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.5 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3 The Hijazi Inequalities on Complete Manifolds 81
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3 Proof of the Hijazi type inequalities . . . . . . . . . . . . . . . . . . . . . 85
4 The Energy-Momentum Tensor 93
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2 The Dirac operator on semi-Riemannian manifolds . . . . . . . . . . . . 95
c4.3 Semi-Riemannian Spin hypersurfaces . . . . . . . . . . . . . . . . . . . . 98
4.4 The generalized cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5 The variational formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
c4.6 The energy-momentum tensor on Spin manifolds . . . . . . . . . . . . . 107
4.7 Thetum tensor in low dimensions . . . . . . . . . . . . . . 110
4.7.1 The 2-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . 112
4.7.2 The 3-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . 116
78 CONTENTS
c5 Hypersurfaces of Spin Manifolds 119
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.2.1 Basic facts aboutE( ; ) and their hypersurfaces . . . . . . . . . 121
25.2.2 Basic facts aboutM (c) and their real hyp . . . . . . . 122
C
c5.2.3 Hypersurfaces and induced Spin structures . . . . . . . . . . . . 123
25.3 Isometric immersions intoM (c) via spinors . . . . . . . . . . . . . . . . 124
C
25.3.1 Special spinor elds on M (c) and their hypersurfaces . . . . . . . 124
C
c 25.3.2 Spin characterization of Hypersurfaces ofM (c) . . . . . . . . . . 128
C
5.4 Isometric immersions intoE( ; ) via spinors . . . . . . . . . . . . . . . . 129
5.4.1 Special spinor elds on E( ; ) and their hypersurfaces . . . . . . 130
c5.4.2 Spin characterization of hypersurfaces ofE( ; ) . . . . . . . . . 132
5.5 Generalized Lawson correspondence . . . . . . . . . . . . . . . . . . . . . 138
6 Eigenvalue Estimates 141
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3 Upper bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.4 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.5 A geometric application . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
c7 Spin Characterization of CR-structures 151
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.2 CR-structures on manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.3 and complex structures . . . . . . . . . . . . . . . . . . . . 155
c7.3.1 CR-structures via Spin structur

Voir icon more
Alternate Text