I. Quantencomputer und ihre Bedeutung
für die Kryptoanalyse
Sebastian Lehnhoff
2 Quantencomputer und ihre Bedeutung für die Kryptoanalyse
I. QUANTENCOMPUTER UND IHRE BEDEUTUNG FÜR DIE KRYPTOANALYSE ........ 1
I.1 EINLEITUNG UND MOTIVATION...................................................................................... 3
I.2 NOTWENDIGE EINFÜHRUNG IN DIE QUANTENMECHANIK ................................... 4
I.2.1 DAS MACH-ZEHNDER-INTERFEROMETER ............................................................................... 4
I.3 DER QUANTENCOMPUTER ................................................................................................ 7
I.3.1 FUNKTIONSWEISE .................................................................................................................... 7
I.3.2 VOR- UND NACHTEILE............................................................................................................. 9
I.3.3 PROBLEME BEI DER KONSTRUKTION....................................................................................... 9
I.4 DIE BEDEUTENDSTEN ALGORITHMEN FÜR DIE KRYPTOANALYSE................. 10
I.4.1 ALGORITHMUS VON SHOR..................................................................................................... 10
I.4.2 AUS VON GROVER 11
I.5 ERFOLGVERSPRECHENDE QUANTENCOMPUTERMODELLE.............................. 13
I.5.1 DER IONENFALLEN-QUANTENCOMPUTER............................................................................. 13
I.5.2 DER NMR-QUANTENCOMPUTER........................................................................................... 15
I.6 ZUSAMMENFASSUNG......................................................................................................... 19
I.7 LITERATURANGABEN ....................................................................................................... 19
I.7.1 PRINTMEDIEN ........................................................................................................................ 20
I.7.2 ELEKTRONISCHE DOKUMENTE.............................................................................................. 21
Kapitel I.2.1. Das Mach-Zehnder-Interferometer 3
I.1 Einleitung und Motivation
Die Geschichte der Computer Technologie beinhaltet hinsichtlich ihrer technischen Entwicklung und
Realisation eine Reihe von grundlegenden Veränderungen. Angefangen bei Schaltwerken, über
Röhren bis zur Entwicklung von Transistoren und integrierten Schaltkreisen ist es heutzutage möglich,
dank ausgefeilter lithografischer Methoden, logische Gatter und Verknüpfungen in der
Größenordnung einiger Nanometer auf die Oberfläche von Siliziumchips zu brennen.
Es ist abzusehen, dass man bei der Geschwindigkeit dieser Entwicklung in nicht all zu ferner Zukunft
einen Punkt erreicht haben wird, an dem diese logischen Strukturen nur noch die Größe einiger
weniger Atome haben werden. Beim Umgang mit diesen Größenordnungen verlassen wir jedoch den
Bereich der klassischen Physik. Auf atomarer Ebene herrschen die Gesetze der Quantenphysik, die
sich fundamental von denen unterscheiden, mit denen wir im Alltag zu tun haben und die das
Verhalten konventioneller logischer Gatter bestimmen.
Wenn Computerstrukturen in Zukunft also immer weiter miniaturisiert werden, muss eine
Technologie, die auf eben diesen Gesetzen der Quantenmechanik aufbaut, unweigerlich unsere jetzige
"klassische“ Technologie ersetzen oder zumindest ergänzen.
Der springende Punkt ist jedoch, dass Quantentechnologie sehr viel mehr zu bieten hat, als schlicht
immer mehr Transistoren auf die Oberfläche eines Chips zu zwingen und die Taktfrequenz von
Prozessoren zu erhöhen. Quantentechnologie bietet eine vollkommen neue Art der Datenverarbeitung
und Bewältigung von Problemen mit qualitativ neuen Algorithmen, die sich die Prinzipien der
Quantenmechanik zu Nutze machen.
Um zu verstehen, was Quantencomputer so grundlegend von unseren jetzigen Systemen unterscheidet
betrachtet man, wie elementare Informationseinheiten in klassischen, digitalen Computern
repräsentiert werden, nämlich durch die Spannungszustände eines Kondensators. Hier entsprechen ein
geladener Kondensator der 1 und sein ungeladenes Gegenstück der 0. Ein Bit ließe sich aber ebenso
über zwei verschiedene Polarisationsebenen von Licht (Quanten) oder zwei elektronische
(energetische) Zustände eines Atoms repräsentieren.
4 Quantencomputer und ihre Bedeutung für die Kryptoanalyse
I.2 Notwendige Einführung in die Quantenmechanik
Verwendet man jedoch atomare Größen, wie Atomzustände oder Lichtquanten als Repräsentation, ist
eine Folge der Quantenmechanik, dass die Teilchen, abgesehen von ihren beiden diskreten Zuständen
auch noch einen dritten Zustand, nämlich eine kohärente Superposition beider Zustände einnehmen
können. Das bedeutet nichts weniger, als dass sich das Teilchen gleichzeitig in beiden Zuständen
befindet.
Um sich an diesen ungewöhnlichen Gedanken zu gewöhnen, betrachtet man folgendes Experiment,
dessen Aufbau allgemein als Mach-Zehnder-Interferometer bekannt ist [URL-8].
I.2.1 Das Mach-Zehnder-Interferometer
Es soll ein einzelnes Photon (Lichtteilchen) an einem halbdurchlässigen Spiegel reflektiert werden.
Ein halbdurchlässiger Spiegel reflektiert genau die Hälfte des auf ihn einfallenden Lichts und lässt die
andere Hälfte hindurch (Abbildung I.2-1: Mach-Zehnder-Interferometer - Aufbau 1). Es erscheint
einleuchtend, anzunehmen, dass sich das Photon entweder in dem reflektierten oder dem
durchgelassenen Strahl befindet und zwar mit der gleichen Wahrscheinlichkeit. Und in der Tat, wenn
wir das Experiment auf oben gezeigte Art und Weise mehrfach durchführen, erhalten wir ein
gleichverteiltes Ergebnis. Das Photon wird im Schnitt genauso oft an Detektor 1 gemessen, wie an
Detektor 2.
Abbildung I.2-1: Mach-Zehnder-Interferometer - Aufbau 1 Kapitel I.2.1. Das Mach-Zehnder-Interferometer 5
Tatsächlich jedoch nimmt das Photon "beide Wege gleichzeitig“. Um das zu demonstrieren,
kombiniert man beide Strahlen wieder miteinander. Dazu fügt man dem Versuchsaufbau noch einen
halbdurchlässigen Spiegel hinzu und bringt noch zwei vollständig reflektierende Spiegel in den
Strahlengang (Abbildung I.2-2: Mach-Zehnder-interferometer - Aufbau 2).
Wenn das Photon jetzt tatsächlich mit gleicher Wahrscheinlichkeit den durchgehenden und den
reflektierten Weg nehmen würde, würde man nach wie vor 50% der durch die Apparatur gegangenen
Photonen an Detektor 1 messen und die anderen 50% an Detektor 2. Dies passiert jedoch nicht.
Tatsächlich findet man das Photon bei diesem Aufbau mit 100% Wahrscheinlichkeit an Detektor 1
und niemals an Detektor 2.
Abbildung I.2-2: Mach-Zehnder-interferometer - Aufbau 2
Wie kommt die Auslöschung zustande? Man betrachte folgende schematische Darstellung unseres
Versuchs (Abbildung I.2-3: Mach-Zehnder-Interferometer - schematisch).
Abbildung I.2-3: Mach-Zehnder-Interferometer - schematisch 6 Quantencomputer und ihre Bedeutung für die Kryptoanalyse
Man muss wissen, dass ein Lichtstrahl bei der Reflektion an einer Oberfläche eine
Phasenverschiebung um eine halbe Wellenlänge erfährt, wenn das Medium auf der anderen Seite der
reflektierenden Schicht einen höheren Brechungsindex besitzt, als das Medium, durch das der Strahl
die reflektierende Oberfläche getroffen hat.
Das bedeutet, dass unser Lichtstrahl O sowohl an S1, als auch an S3 um jeweils eine halbe
Wellenlänge verschoben wird, an S4 jedoch keine Phasenverschiebung erfährt. Summieren wir diese
Phasenverschiebungen beider Strahlengänge O und U auf, erhalten wir eine konstruktive
Überlagerung der Strahlen an Detektor 1 und eine destruktive Überlagerung an Detektor 2.
Um wirklich sicher zu sein, nimmt man noch eine letzte Änderung an dem Versuchsaufbau vor. Es
wird eine lichtundurchlässige Scheibe in den reflektierten Strahlengang eingebracht (Abbildung I.2-4:
Mach-Zehnder-Interferometer - Aufbau 3).
Abbildung I.2-4: Mach-Zehnder-Interferometer - Aufbau 3
Das Blockieren eines Strahlengangs hat zur folge, dass wieder beide Detektoren mit gleicher
Wahrscheinlichkeit erreicht werden. Dieses Ergebnis ist natürlich unabhängig davon, ob wir nun den
reflektierten oder durchgelassenen Strahlengang unterbrechen.
Betrachtet man den Versuchsverlauf und erinnert sich daran, dass das ganze Experiment mit immer
nur einem Photon durchgeführt wird, kommt man unausweichlich zu dem Schluss, dass das Photon
beide Wege genommen haben muss. Wenn man den weiter oben eingeführten Begriff verwenden will,
lässt sich sagen, dass sich das Photon in einer (kohärenten) Superposition beider Strahlengänge
befindet. Kapitel I.3.1. Funktionsweise 7
I.3 Der Quantencomputer
I.3.1 Funktionsweise
Auf ähnliche Art und Weise kann man ein Atom in eine Superposition zweier elektronischer oder
Spin-Zustände bringen. Ganz allgemein kann man ein Quantensyste