ELEG3410 Random Process & DSP Tutorial # 2 Outline: 1. Probability Density Function (p.d.f) & Continuous R.V & Discrete R.V. 2. Probability Distribution Function (PDF) 3. Expected Value & Moment 4. Error Function of Gaussian Distribution 5. Error Rate in PCM 11. Probability Density Function (pdf) Continuous Variable: Gaussian / Normal Laplacian 2 ⎛ x − µ ⎞1⎛ ⎞1 ()x − µ ⎜ ⎟ p()x = exp − ⎜ ⎟p()x = exp − ⎜ ⎟2⎜ ⎟ 2b b2 σ2 π σ ⎝ ⎠ ⎝ ⎠ Uniform 1p()x = b − a Discrete Variable: Assume the discrete random variable x takes only the values x1, x2, …, xj, …, xn with probability P(x1), P(x2), …, P(xj), …, P(xn). The p.d.f. of x is n p(x) = P(x ) ⋅ δ (x − x )∑ j jj =1 2P(x ) 3P(x ) P(x ) 4 nP(x ) P (x ) 1 2……x x x x x1 2 3 4 n Example: Throw a dice: {1,2,3,4,5,6} 1 1 1 1 1 1p(x) = δ (x −1) + δ (x − 2) + δ (x − 3) + δ (x − 4) + δ (x − 5) + δ (x − 6) 6 6 6 6 6 6 2. Probability Distribution Function (PDF) Continuous Variable: The distribution function of random variable x x1W()x = p(x)dx = P(x ≤ x) 1 1∫− ∞The p.d.f. p(x) is not a probability but a rate of change of the probability dW(x)dxW(x) : Gaussian / Normal 2⎛ ⎞1 ()x − µ ⎜ ⎟p()x = exp −⎜ 2 ⎟2 σ2 π σ ⎝ ⎠probability density function and probability distribution funtion 3Discrete Variable: ...
Voir