these

icon

8

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

8

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

280BibliographieO.M. Aamo et T.I. Fossen: Stabilization of Fluid Flows in Channels and Pipes (Tutorial on FeedbackControl of Flows, Part I). Modelling, Identification and Control, 23(3):161–226, 2002.R. Adrian, J.-P. Bonnet, J. Delville, F. Hussain, J. Lumley, O. Metais et C. Vassilicos: EddyStructure Identification Techniques in Free Turbulent Shear Flows. In CISM/ERCOFTAC AdvancedCourse. Springer-Verlag, 1996.K. Afanasiev et M. Hinze: Adaptive control of a wake flow using Proper Orthogonal Decomposition. InShape Optimization and Optimal Design, Lecture Notes in Pure and Applied Mathematics, volume 216.Marcel Dekker, 2001.C. Airiau: Stabilité linéaire et faiblement non-linéaire d’une couche limite incompressible par un systèmed’équations paraboliques. Thèse de doctorat, Ecole Nationale Supérieure de l’Aéronautique et de l’Espace,1994.N. Alexandrov, J.E. Dennis Jr, R.M. Lewis et V. Torczon: A Trust Region framework for managingthe use of approximation models in optimization. Icase report, 97-50, 1997.V.R.Algazi et D.J.Sakrison: On the optimality of the Karhunen-Loève expansion. IEEE Trans. Inform.Theory, 15, 1969.B.G. Allan: A reduced order model of the linearized incompressible Navier-Stokes equations for the sen-sor/actuator placement problem. Icase report, 2000-19, 2000.C.A. Andrews, J.M. Davies et G.R. Schwartz: Adaptative data compression. Proc. IEEE, 55, 1967.A.C.Antoulas et D.C.Sorensen: Approximation of large-scale dynamical systems: an overview. ...
Voir icon arrow

Publié par

Nombre de lectures

32

Langue

English

280
Bibliographie
O.M.Aamoet T.I.Fossenof Fluid Flows in Channels and Pipes (Tutorial on Feedback: Stabilization Control of Flows, Part I).Modelling, Identification and Control, 23(3):161–226, 2002. R.Adrian, J.P.Bonnet, J.Delville, F.Hussain, J.Lumley, O.Metaiset C.Vassilicos: Eddy Structure Identification Techniques in Free Turbulent Shear Flows.In CISM/ERCOFTAC Advanced Course. SpringerVerlag, 1996. K.Afanasievet M.Hinzecontrol of a wake flow using Proper Orthogonal Decomposition.: Adaptive In Shape Optimization and Optimal Design, Lecture Notes in Pure and Applied Mathematics, volume 216. Marcel Dekker, 2001. C.Airiau:Stabilité linéaire et faiblement nonlinéaire d’une couche limite incompressible par un système d’équations paraboliquesde doctorat, Ecole Nationale Supérieure de l’Aéronautique et de l’Espace,. Thèse 1994. N.Alexandrov, J.E.Dennis Jr, R.M.Lewiset V.TorczonTrust Region framework for managing: A the use of approximation models in optimization.Icase report, 9750, 1997. V.R.Algaziet D.J.Sakrison: On the optimality of the KarhunenLoève expansion.IEEE Trans. Inform. Theory, 15, 1969. B.G.Allan: A reduced order model of the linearized incompressible NavierStokes equations for the sen sor/actuator placement problem.Icase report, 200019, 2000. C.A.Andrews, J.M.Davieset G.R.Schwartzdata compression.: Adaptative Proc. IEEE, 55, 1967. A.C.Antoulaset D.C.Sorensen: Approximation of largescale dynamical systems: an overview. Rapport technique, université de Rice, 2001. E.Arian, M.Fahlet E.W.Sachs: TrustRegion Proper Orthogonal Decomposition for Flow Control.Icase report, 200025, 2000. S.Armfieldet R.Streetanalysis and comparison of the time accuracy of fractionalstep methods: An for the NavierStokes equations on staggered grids.Int. J. Numer. Meth. Fluids, 38:255–282, 2002. J.A.Atwell:Proper Orthogonal Decomposition for Reduced Order Control of Partial Differential Equations. Thèse de doctorat, Virginia Tech, 2000. J.A.Atwellet B.B.King: Reduced order controllers for spatially distributed systems via Proper Orthogonal Decomposition. Rapport technique, ICAM 990701, Virginia Tech., 1999. N.Aubry, R.Guyonnetet R.Lima: Spatiotemporal analysis of complex signals: theory and applications. J. Statis. Phys., 64(3/4):683–739, 1991. N.Aubry, P.Holmes, J.L.Lumleyet E.Stone: The dynamics of coherent structures in the wall region of a turbulent boundary layer.J. Fluid Mech., 192:115–173, 1988. S.J.Baeket H.J.Sung: Quasiperiodicity in the wake of a rotationally oscillating cylinder.J. Fluid Mech., 408:275–300, 2000. S.J.Baeket H.J.Sung: Numerical simulation of the flow behind a rotary oscillating circular cylinder.Phys. Fluids, 10(4):869–876, 1998. D.Barkleyet R.D.Henderson: Threedimensional Floquet stability analysis of the wake of a circular cylinder.J. Fluid Mech., 322:215–241, 1996. P.Bergé, Y.Pomeauet C.Vidal:: vers une approche déterministe de la turbulenceL’ordre dans le chaos . Hermann, 1988. E.Bergeret R.Willeflow phenomena.: Periodic Annu. Rev. Fluid Mech., 4:313–340, 1972. M.Bergmann:Optimisation aérodynamique par réduction de modèle POD et contrôle optimal. Application au sillage laminaire d’un cylindre circulaire. (Document annexe).Thèse de doctorat, Institut National Polytechnique de Lorraine, Nancy, France, 2004.
BIBLIOGRAPHIE
281
G.Berkooz, P.Holmeset J.L.Lumley: The Proper Orthogonal Decomposition in the analysis of turbulent flows.Ann. Rev. Fluid Mech., 25:539–575, 1993. L.P.Bernalet A.Roshko: Streamwise vortex structure in plane mixing layers.J. Fluid Mech., 170:499–525, 1986. T.R.Bewley: Flow control: new challenges for a new Renaissance.Progress in Aerospace Sciences, 37:21–58, 2001. T.R.Bewleyet R.Agarwal: Optimal and robust control of transition. Summer program, Center for Turbulence Research, 1996. T.R.Bewleyet S.Liuand robust control and estimation of linear paths to transition.: Optimal J. Fluid Mech., 365:305–349, 1998. T.R.Bewley, P.Moinet R.Temam: DNSbased predictive control of turbulence: an optimal benchmark for feedback algorithms.J. Fluid Mech., 447:179–225, 2001. T.R.Bewley, R.Temamet M.Zianegeneral framework for robust control in fluid mechanics.: A Physica D, 138:360–392, 2000a. T.R.Bewley, R.Temamet M.Ziane: Existence and uniqueness of optimal control to the NavierStokes equations.C.R. Acad. Sci. Paris, 330:1–5, 2000b. J.G.Blaschaket G.A.Kriegsmann: A Comparative Study of Absorbing Boundary Conditions.J. Comp. Phys., 77:109–139, 1988. M.S.Bloortransition to turbulence in the wake of a circular cylinder.: The J. Fluid Mech., 19:290, 1964. J.F.Bonnans, J.C.Gilbert, C.Lemaréchalet C.A.Sagastizábal:Numerical Optimization. Springer, 2003. J.P.Bonnetet J.Delville: Coherent structures in turbulent flows and numerical simulations approaches. In Lecture series 200204 on postprocessing of experimental and numerical data. Von Kármán Institute for Fluid Dynamics, 2002. A.J.Booker, J.E.Dennis Jr., P.D.Frank, D.B.Serafini, V.Torczonet M.W.Trosset: A rigorous framework for optimization of expensive functions by surrogates. Rapport technique, université de Rice, 1999. J.Borggaard, J.Burkardt, M.D.Gunzburgeret J.Peterson:Optimal Design and Control. Bir khäuser, Boston, 1994. M.Braza:Simulation numérique. Thèse de doctorat, Institut National Polytechnique de Toulouse, 1981. M.Braza:Simulation numérique de l’écoulement autour d’un cylindre circulaire. Thèse de doctorat, Institut National Polytechnique de Toulouse, 1986. M.Braza, P.Chassainget H.Ha Minhstudy and physical analysis of the pressure and: Numerical velocity fields in the near wake of a circular cylinder.J. Fluid Mech., 165:79, 1986. M.Braza, P.Chassainget H.Ha Minhof largescale transition features in the wake of a: Prediction circular cylinder.Phys. Fluids A, 2(8):1461–1471, 1990. G.L.Brownet A.Roshko: On density effects and large scale structures in turbulent mixing layer.J. Fluid Mech., 64:775–816, 1974. J.M.Buchot, D.Kalfonet J.P.Raymond: suppression des: Contrôle feedback d’écoulements. Application allées de Von Karman à faible nombre de Reynolds. Rapport technique, ONERA. Département Traitement de l’Information et Modélisation, 2003. J.Burkardt, M.Gunzburgeret H.C.Lee: Centroidal voronoi tessellationbased reducedorder modeling of complex systems. Rapport technique, Florida State University, 2004. R.G.Carter: On the global convergence of trust region algorithms using inexact gradient informations. SIAM J. Numer. Anal., 28(1):251–265, 1991. W.Cazemier:Proper Orthogonal Decomposition and lowdimensionnal models for turbulent flows. Thèse de doctorat, université de Groningen, 1997. W.Cazemier, R.W.C.P.Verstappenet A.E.P.VeldmanOrthogonal Decomposition and low: Proper dimensional models for driven cavity flows.Phys. Fluids, 10(7):1685–1699, 1998. Y.Chang:Approximate models for optimal control of turbulent channel flow. Thèse de doctorat, université de Rice, 2000. A.Chatterjee: An introduction to the Proper Orthogonal Decomposition.Current Science, 78(7):808–817, 2000.
282
G.Chenet S.S.CollisControl for Burgers Flow Using the Discontinuous Galerkin Method.: Optimal In AIAA Student Paper Conference, 2003. M.Cheng, Y.T.Chewet S.C.Luoinvestigation of a rotationally oscillating cylinder in mean: Numerical flow.J. Fluids Struct., 15:981–1007, 2001a. M.Cheng, G.R.Liuet K.Y.Lam: Numerical simulation of flow past a rotationally oscillating cylinder. Computers & Fluids, 30:365–392, 2001b. S.Choi, H.Choiet S.Kang: Characteristics of flow over a rotationally oscillating cylinder at low Reynolds number.Phys. Fluids, 14(8):2767–2777, 2002. A.J.Chorin: Numerical solution of the NavierStokes equations.Math. Comp., 22:745–762, 1968. M.H.Chou: Synchronization of vortex shedding from a cylinder under rotary oscillation.Computers & Fluids, 26:755–774, 1997. E.A.Christensen, M.Brønset J.N.Sørensen: Approximation of largescale dynamical systems: an over view. Evaluation of PODbased decomposition techniques applied to parameterdependent non turbulent flows. Rapport technique, université Technique du Danemark, 1998. A.R.Conn, N.I.M.Gouldet P.L.Toint:Trustregion methods. SIAM, Philadelphia, 2000. L.Cordier:Etude de systèmes dynamiques basés sur la Décomposition Orthogonale aux valeurs Propres (POD). Application à la couche de mélange turbulente et à l’écoulement entre deux disques contrarotatifs. Thèse de doctorat, université de Poitiers, 1996. L.Cordieret M.Bergmann: Proper Orthogonal Decomposition: an overview.In Lecture series 200204 on postprocessing of experimental and numerical data. Von Kármán Institute for Fluid Dynamics, 2002a. L.Cordieret M.Bergmann: Two typical applications of POD: coherent structures eduction and reduced order modelling.In Lecture series 200204 on postprocessing of experimental and numerical data. Von Kármán Institute for Fluid Dynamics, 2002b. M.Couplet, P.Sagautet C.Basdevantenergy transfers in a proper orthogonal: Intermodal decompositionGalerkin representation of a turbulent separated flow.J. Fluid Mech., 491:275–284, 2003. R.Courantet D.Hilbert:Methods of mathematical physics. Vol. 1.John Wiley & Sons, NewYork, 1953. M.Coutanceauet R.Bouar: Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow.J. Fluid Mech., 79:231, 1977. A.E.Deane, I.G.Kevrekidis, G.E.Karniadakiset S.A.Orszagmodels for complex: Lowdimensional geometry flows: Application to grooved channels and circular cylinders.Phys. Fluids, 10(3):2337–2354, 1991. J.Delville, L.Ukeiley, L.Cordier, J.P.Bonnetet M.Glauser: Examination of largescale structures in a turbulent mixing layer. Part 1. Proper Orthogonal Decomposition.J. Fluid Mech., 391:91–122, 1999. S.C.R.Denniset G.Z.Chang: Numerical solutions for steady flow past a circular cylinder at Reynolds number up to100.J. Fluid Mech., 42:471, 1970. N.Di Césaré:Outils pour l’optimisation de forme et le contrôle optimal, application à la mécanique des fluidesde doctorat, université Paris 6, 2000.. Thèse Y.Dinget M.Kawahara: Threedimensional linear stability analysis of incompressible viscous flows using the finite element method.Int. J. Numer. Meth. Fluids, 31:451–479, 1999. R.Duvigneau:Contribution à l’optimisation de forme pour des écoulements à forts nombres de Reynolds autour de géométries complexes. Thèse de doctorat, Ecole Centrale de Nantes, 2002. H.Eisenlohret H.Eckelmann: Vortex splitting and its consequences in the vortex street wake of cylinders at low Reynolds number.Phys. Fluids, 1(2):189–192, 1989. A.Elshrif: Contrôle optimal des équations de Burgers monodimensionnelles. Méthodologies pour l’optimi sation aérodynamique. Mémoire de DEA, Institut National Polytechnique de Lorraine, 2003. B.Engquistet A.MajdaRadiation Boundary Conditions for Unsteady Transsonic Flow.: Numerical J. Comp. Phys., 40:91–103, 1981. A.Ernet J.L.Guermond:: théorie, applications, mise en uvre.Eléments finis Springer, 2002. M.Fahl:TrustRegion methods for flow control based on Reduced Order Modeling. Thèse de doctorat, université de Trier, 2000. H.O.Fattoriniet S.S.Sritharan: Existence of optimal control for viscous flow problems.Proc. R. Soc. Lond. A, 439:81–102, 1992. U.Fey, M.Königet H.Eckelmann: A new StrouhalReynoldsnumber relationship for the circular cylinder 5 in the range47re2×10.Phys. Fluids, 10(7):1547–1549, 1998.
BIBLIOGRAPHIE
283
C.A.J.Fletcher:Computational Techniques for Fluid Dynamics. Springer, 1991. B.Fornberg: A numerical study of steady viscous flow past a cylinder.J. Fluid Mech., 98:819, 1980. M.Gad-el-Hak:Flow Control: Passive, Active and Reactive Flow ManagementUniversity. Cambridge Press, London, United Kingdom, 2000. M.Gad-el-Hak:The MEMS Handbook. CRC Press, Boca Raton, Florida, 2002. B.Galletti, C.H.Bruneau, L.Zannettiet A.Iollo: Loworder modelling of laminar flow regimes past a confined square cylinder.J. Fluid Mech., 503:161–170, 2004. G.H.Golubet C.F.Van Loan:Matrix computations. The Johns Hopkins University Press, Baltimore, 1990. S.Gordeyev:Investigation of coherent structure in the similarity region of the planar turbulent jet using POD and wavelet analysisde doctorat, université de Notre Dame, 1999.. Thèse W.R.Graham, J.Peraireet K.T.TangControl of Vortex Shedding Using Low Order Models.: Optimal Part 1. OpenLoop Model Development.Int. J. for Numer. Meth. in Engrg., 44(7):945–972, 1999a. W.R.Graham, J.Peraireet K.T.Tang: Optimal Control of Vortex Shedding Using Low Order Models. Part 2: Modelbased control.Int. J. for Numer. Meth. in Engrg., 44(7):973–990, 1999b. P.M.Gresho, S.T.Chan, R.L.Leeet C.D.Upson: A modified finite element method for solving the time dependent incompressible NavierStokes equations. Part 2. Applications.Int. J. Numer. Meth. Fluids, 4:619, 1984. M.Gunzburger: Reducedorder modeling. data compression and the design of experiments. Rapport technique, Florida State University, 2004. M.D.Gunzburger:Flow control. Springer, New York, 1995. M.D.Gunzburger: Introduction into mathematical aspects of flow control and optimization.In Lecture series 199705 on inverse design and optimization methods. Von Kármán Institute for Fluid Dynamics, 1997a. M.D.Gunzburgermultiplier techniques.: Lagrange In Lecture series 199705 on inverse design and optimization methods. Von Kármán Institute for Fluid Dynamics, 1997b. M.D.Gunzburger: Approximate soutions via sensitivities.In Lecture series 199705 on inverse design and optimization methods. Von Kármán Institute for Fluid Dynamics, 1997c. M.D.Gunzburgeradjoints and flow optimization.: Sensitivities, Int. J. Numer. Meth. Fluids, 31:53–78, 1999. M.D.GunzburgerEquationBased Methods for Control Problems in Incompressible, Viscous: Adjoint Flows.Flow, Turbulence and Combustion, 65:249–272, 2000. M.Hammacheet M.Gharibexperimental study of the parallel and oblique vortex shedding from: An circular cylinders.J. Fluid Mech., 232:567–590, 1991. J.W.He, R.Glowinski, R.Metcalfe, A.Nordlanderet J.Périaux: Active control and drag optimi zation for flow past a circular cylinder. Part 1. Oscillatory cylinder rotation.J. Comp. Phys., 163:83–117, 2000. X.Heet G.Doolen: Lattice Boltzmann Method on Curvilinear Coordinates System: Flow around a Circular Cylinder.J. Comp. Phys., 134:306–315, 1997. R.D.Henderson: Details of the drag curve near the onset of vortex shedding.Phys. Fluids, 7(9):2102–2104, 1995. R.D.Hendersondynamics and pattern formation in turbulent wake transition.: Nonlinear J. Fluid Mech., 352:65–112, 1997. N.J.Higham: Matrix nearness problems and applications.In Applications of matrix theory, pages 1–27. Glover and Barnett editors, Clarendon Press, 1989. M.Hinzeet T.Slawing: Adjoint gradients compared to gradients from algorithmic differentiation in instantaneous control of the NavierStokes equations.Optimization Methods and Software, 18:299–315, 2003. M.Hinzeet S.Volkwein: Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynami cal Systems: Error Estimates and Suboptimal Control. Rapport technique, preprint SFB609, Technische Universität Dresden, 2004. P.Holmes, J.L.Lumleyet G.Berkooz:Turbulence, Coherent Structures, Dynamical Systems and Sym metryMonographs on Mechanics, 1996.. Cambridge
284
C.Homescu, I.M.Navonet Z.Li: Suppression of vortex shedding for flow around a circular cylinder using optimal control.Int. J. Numer. Meth. Fluids, 38:43–69, 2002. H.Hotelling: Analysis of a complex statistical variables into principal components.Journal of Educational Psychology, 24:417–441, 1933. L.Hubert, J.Meulemanet W.Heiserpurposes for matrix factorization: a historical appraisal.: Two SIAM Review, 42:68–82, 2000. A.IolloRapport techniqueon the approximation of the Euler equations by a low order model. : Remarks 3329, INRIA, 1997. A.Iollo, S.Lanteriet J.A.Désidéri: Stability properties of PODGalerkin approximations for the compressible NavierStokes equations. Rapport technique 3589, INRIA, 1998. K.Itoet S.SRavindranreducedorder method for simulation and control of fluid flows.: A J. Comp. Phys., 143:403–425, 1998. C.P.Jacksonfiniteelement study of the onset of vortex shedding in flow past variously shaped bodies.: A J. Fluid Mech., 182:23–45, 1987. G.Jinet M.Braza: A Nonreflecting Outlet Boundary Condition for Incompressible Unsteady NavierStokes Calculations.J. Comp. Phys., 107(2):239–253, 1993. I.T.Joliffe:Principal Component Analysis1986.. SpringerVerlag, R.D.Joslinof Laminar Flow Control.: Overview Technical publication, NASA/TP1998208705, 1998. R.D.Joslin, M.D.Gunzburger, R.A.Nicolaides, F.Erlebacheret M.Y.Hussaini: A selfcontained, automated methodology for optimal flow control validated for transition delay.Icase report, 9564, 1995. S.Kang, H.Choiet S.Lee: Laminar flow past a rotating circular cylinder.Phys. Fluids, 11(11):3312–3321, 1999. K.Karhunenspektral theorie stochasticher prozesse.: Zur Ann. Acad. Sci. Fennicae, Ser. A1, 34, 1946. E.G.Karniadakis, M.Israeliet S.A.Orszag: Highorder splitting methods for the incompressible Navier Stokes equations.J. Comp. Phys., 97(2):414–443, 1991. J.Kimof turbulent boundary layers.: Control Phys. Fluids, 15(5):1093–1105, 2003. M.Kirbyet L.Sirovich: Application of the KarhunenLoève procedure for the characterization of human faces.IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1):103–108, 1990. J.C.Lagarias, J.A.Reeds, M.H.Wrightet P.E.Wrightproperties of the NelderMead: Convergence simplex method in low dimensions.Siam J. Optim., 9(1):112–147, 1998. E.Laugaet T.R.Bewley: Modern control of linear global instability in a cylinder wake model.Int. J. Heat and Fluid Flow, 23(5):671–677, 2002. E.Laugaet T.R.Bewley: The decay of stabilizability with Reynolds number in a linear model of spatially developing flows.Proc. Roy. Soc. A, 459:2077–2095, 2003. E.Laugaet T.R.Bewley: Performance of a linear robust control strategy on a nonlinear model of spatially developing flows.J. Fluid Mech., 512:343–374, 2004. F.L.Lewiset V.L.Syrmos:Optimal ControlWiley and Sons, New York, second edition, 1995.. John Z.Li, I.M.Navon, M.Y.Hussainiet F.X.Le Dimet: Optimal control of cylinder wakes via suction and blowing.Computers & Fluids, 32:149–171, 2003. M.Loève:Probability TheoryNostrand, 1955.. Van X.Y.Luet J.Satonumerical study of flow past a rotationally oscillating circular cylinder.: A J. Fluids Struct., 10:829–849, 1996. J.L.Lumley:Atmospheric Turbulence and Wave Propagation. The structure of inhomogeneous turbulence, pages 166–178. A.M. Yaglom & V.I. Tatarski, 1967. X.Ma, G.S.Karamanoset G.E.Karniadakis: Dynamics and lowdimensionality of a turbulent near wake.J. Fluid Mech., 410:29–65, 2000. X.Maet G.E.Karniadakis: A lowdimensional model for simulating threedimensional cylinder flow.J. Fluid Mech., 458:181–190, 2002. F.M.Mahfouzet H.M.BadrStructure in the Wake of a Rotationally Oscillating Cylinder.: Flow Journal of Fluids Engineering, 122(2):290–301, 2000. J.Mckerman, G.Papadakiset J.F.Whidborne: Modelling Plane Poiseuille Flow for Feedback Control Design. Rapport technique, King’s College London, 2003. M.Milanoet P.Koumoutsakos: A clustering genetic algorithm for cylinder drag optimization.J. Comp. Phys., 175:79–107, 2002.
BIBLIOGRAPHIE
285
G.D.Milleret C.H.K.Williamsonof threedimensionnal phase dynamics in a cylinder wake.: Control Exp. Fluids, 18:26, 1994. C.Minet H.Choifeedback control of vortex shedding at low Reynolds numbers.: Suboptimal J. Fluid Mech., 401:123–156, 1999. S.Mittalet B.Kumarpast a rotating cylinder.: Flow J. Fluid Mech., 476:303–334, 2003. B.Mohammadiet O.Pironneau:Applied Shape Optimization for FluidsUniversity Press, 2001.. Oxford J.J.Morédevelopments in algorithms and software for trust region methods.: Recent InM. Grötschen A. Bachenet B.korte:, éditeurs Mathematical programming, pages 258–287. Springer, 1983. M.Morzyński, K.Afanasievet F.Thiele: Solution of the eigenvalue problems resulting from global nonparallel flow stability analysis.Comput. Meth. Appl. Mech. Engng, 169:161–176, 1999. M.Morzyńskiet F.Thiele: Numerical stability analysis of a flow about a cylinder.Z. Angew. Math. Mech., 71:T424–T428, 1991. F.Muyl, L.Dumaset V.Herbert: Hybrid method for aerodynamic shape optimization in automotive industry.Computers & Fluids, 33(56):849–858, 2004. F.Nieuwstadtet H.B.Kellerflow past circular cylinders.: Viscous Comput. & Fluids, 1:59, 1973. B.R.Noack, K.Afanasiev, M.Morzyński, G.Tadmoret F.Thiele: A hierarchy of lowdimensional models for the transient and posttransient cylinder wake.J. Fluid Mech., 497:335–363, 2003. B.R.Noacket H.Eckelmann: A global stability analysis of the steady and periodic cylinder wake.J. Fluid Mech., 270:297–330, 1994. B.R.Noack, G.Tadmoret M.Morzyńskimodels for feedback flow control. Part I:: Lowdimensional Empirical Galerkin models.In 2nd AIAA Flow Control Conference, Portland, Oregon, U.S.A., June 28 – July 1, 2004. AIAAPaper 20042408 (invited contribution). J.Nocedalet S.J.Wright:Numerical Optimization. Springer series in operations research, 1999. C.Norgberg: An experimental investigation of the flow around a circular cylinder: influence of aspect ratio. J. Fluid Mech., 258:287–316, 1994. H.Persillonet M.Brazaanalysis of the transition to turbulence in the wake of a circular: Physical cylinder by threedimensional NavierStokes simulation.J. Fluid Mech., 365:23–88, 1998. O.Posdziechet R.Grundmannsimulation of the flow around an infinitely long circular: Numerical cylinder in the transition regime.Theoret. Comput. Fluid Dynamics, 15:121–141, 2001. M.J.D.Powell: Convergence properties of a class of minimization algorithms.In Nonlinear programming 2, pages 1–27. Academic Press, 1975. R.D.Prabhu, S. ScottColliset Y.Chang: The influence of control on Proper Orthogonal Decomposition of wallbounded turbulent flows.Phys. Fluids, 13(2):520–537, 2001. S.PrajnaModel Reduction with Stability Guarantee.: POD In IEEE CDC, 2003. L.Prandtl: The magnus effect and windpowered ships.Naturwissenschaften, 13:93, 1925. L.Prandtl:The mechanics of viscous fluids.Durand., 1935. B.Protas:Analysis and control of aerodynamic forces in the plane flow past a moving obstacle  Application of the vortex method. Thèse de doctorat, Warsaw University of Technology et université Pierre et Marie Curie, 2000. B.Protaset A.Styczek: Optimal rotary control of the cylinder wake in the laminar regime.Phys. Fluids, 14(7):2073–2087, 2002. B.Protaset J.E.Wesfreid: Drag force in the openloop control of the cylinder wake in the laminar regime. Phys. Fluids, 14(2):810–826, 2002. L.Quartapelle: Solution of the timedependent incompressible NavierStokes equations by finite elements. In Lecture series 199204. Von Kármán Institute for Fluid Dynamics, 1992. M.Rathinamet L.Petzold: A New Look at Proper Orthogonal Decomposition.SIAM J. Num. Anal., 41 (5):1893–1925, 2003. S.S.Ravindran: Proper Orthogonal Decomposition in optimal control of fluids. Rapport technique, NASA, Langley Research Center, Hampton, Virginia, 1999. S.S.Ravindran: Reducedorder adaptive controllers for fluid flows using POD.J. of Scientific Computing, 15(4):457–478, 2000a. S.S.Ravindranreducedorder approach for optimal control of fluids using Proper Orthogonal Decom: A position.Int. J. Numer. Meth. Fluids, 34:425–448, 2000b.
286
D.Rempferof boundary layer transition via Galerkin Projections on Empirical Eigenfunc: Investigations tions.Phys. Fluids, 8(1):175–188, 1996. D.Rempfer: On lowdimensional Galerkin models for fluid flow.Theor. Comput. Fluid Dyn., 14:75–88, 2000. D.Rempferet H.F.Faselof threedimensional coherent structures in a flatplate boundary: Evolution layer.J. Fluid Mech., 260:351–375, 1994. F.Rieszet B.S.Nagy:Functionnal Analysis. Ungar, N.Y., 1955. T.J.Rivlin:An introduction to the approximation of functions. Dover, 1981. A.RoshkoRapport technique 1191, NACA,: On the development of turbulent wakes from vortex streets. 1954. C.WRowley:Modeling, simulation and control of cavity flow oscillations. Thèse de doctorat, California Institute of Technology, 2002. C.W.Rowley: Model reduction for fluids, using balanced proper orthogonal decomposition. Rapport technique, Princeton University, 2004. R.L.Saniet P.M.Gresho: Resume and remarks on the open boundary condition minisymposium.Int. J. Numer. Meth. Fluids, 18:983–1008, 1994. H.SchlichtingGrenzschicht mit Absaugung und Ausblasen.: Die Luftfahrforschung, 19:179–181, 1942. R.Seydel:From equilibrium to chaos. Practical bifurcation and stability analysis. Elsevier, 1988. S.Sirisupet G.E.Karniadakis: A spectral viscosity method for correcting the longterm behavior of POD model.J. Comp. Phys., 194:92–116, 2004. L.Sirovich: Turbulence and the dynamics of coherent structures. Part 1: Coherent structures.Quarterly of Applied Mathematics, XLV(3):561–571, 1987a. L.Sirovich: Turbulence and the dynamics of coherent structures. Part 2: Symmetries and transformations. Quarterly of Applied Mathematics, XLV(3):573–582, 1987b. L.Sirovichand the dynamics of coherent structures. Part 3: Dynamics and scaling.: Turbulence Quarterly of Applied Mathematics, XLV(3):583–590, 1987c. A.Smithet D.Silvesteralgorithms and their linearisation for the transient NavierStokes: Implicit equations.IMA J. Numer. Anal., 17:527–545, 1997. A.Sornborger, C.Sailstad, E.Kaplanet L.Sirovich: Spatiotemporal analysis of optical imaging data. NeuroImage, 18:610–621, 2003. S.S.Sritharan:Optimal Control of Viscous Flow. SIAM, 1998. R.F.Stengel:Optimal control and estimation. Dover, 1994. G.Tadmor, B.R.Noack, M.Morzyńskiet S.Siegel: Lowdimensional models for feedback flow control. Part II: Controller design and dynamic estimation.In 2nd AIAA Flow Control Conference, Portland, Oregon, U.S.A., June 28 – July 1, 2004. AIAA Paper 20042409 (invited contribution). P.L.Tointconvergence of a class of trustregion methods for nonconvex minimisation in Hilbert: Global space.IMA J. Numer. Anal., 8(2):231–252, 1988. P.T.Tokumaruet P.E.Dimotakis: Rotary oscillatory control of a cylinder wake.J. Fluid Mech., 224:77–90, 1991. D.J.Trittonnote on vortex street behind circular cylinders at low Reynolds numbers.: A J. Fluid Mech., 45:203, 1959. L.Ukeiley, L.Cordier, R.Manceau, J.Delville, M.Glauseret J.P.Bonnet: Examination of large scale structures in a turbulent mixing layer. Part 2. Dynamical systems model.J. Fluid Mech., 441:67–108, 2001. J.Van Kan: A secondorder accurate pressurecorrection scheme for viscous incompressible flow.SIAM J. Sci. Stat. Comput., 7(3):870–891, 1986. G.Vigo: The Proper Orthogonal Decomposition applied to unsteady compressible NavierStokes equation. Rapport technique 3945, INRIA, 1998. S.VolkweinRapport technique: Proper Orthogonal Decomposition and Singular Value Decomposition. 153, Institut für Mathematik, université de Graz, 1999. S.Volkweinand suboptimal control of the Partial Differential Equations: Augmented Lagrange: Optimal SQP methods and Reduced Order Modeling with Proper Orthogonal Decomposition. Habilitation à diriger les recherches, université de Graz, 2001.
BIBLIOGRAPHIE
287
S.Walther:Sensibilité et contrôle optimal des ondes TS dans une couche limite incompressible de plaque planede doctorat, université de Toulouse, 2001.. Thèse C.WieselbergerFeststellungen über dir Gesetze des Flussigkeits und Luftwiederstands.: Neurere Phys. Zeitschr., 22, 1921. K.E.Willcox:Reducedorder aerodynamic models for aeroelastic control of turbomachinesde doc. Thèse torat, Massachusetts Institute of Technology, 2000. C.H.K.Williamson: Oblique and parallel modes of vortex shedding in the wake of a circular cynlinder at low Reynolds numbers.J. Fluid Mech., 206:579–627, 1989. C.H.K.Williamsondynamics in the cylinder wake.: Vortex Ann. Rev. Fluid. Mech., 28:477–539, 1996. J.H.Williamson: LowStorage RungeKutta Schemes.J. Comp. Phys., 35:48–56, 1980. H.Zang, U.Fey, B.R.Noack, M.Koeniget H.Eckelmannthe transition of the cylinder wake.: On Phys. Fluids, 7:779–794, 1995. M.M.Zdravkovich:Flow around circular cylinders  Vol. 1: Fundamentals.Oxford University Press, 1997. A.Zebib: Stability of viscous flows past a circular cylinder.J. Engng Math., 21:155–165, 1987. K.Zhou, J.C.Doyleet K.Glover:Robust and optimal control. Prentice Hall, 1996. O.C.Zienkiewiczet R.L.Taylor:The Finite Element Method: The Basis. Butterworth Heinemann, 2000. London.
Voir icon more
Alternate Text