Testing with the Testers What can we learn from an ``audit study''? - Journées Louis-André Gérard

icon

46

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

46

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

Testing with the TestersWhat can we learn from an \audit study"?Journees Louis-Andre Gerard-Varet #8Romain Aeberhardt Denis FougereJulien Pouget Roland RathelotCREST-INSEE15 juin 2009Aeberhardt, Fougere, Pouget and Rathelot () Testing 15 juin 2009 1 / 28Plan1 Introduction2 The data3 Usual statistics { linear, parametric framework4 Conditional logit { non-linear, parametric framework5 Semi-parametric framework (NEW)6 Real interaction with the employer, statistical discriminationAeberhardt, Fougere, Pouget and Rathelot () Testing 15 juin 2009 2 / 28IntroductionPlan1 Introduction2 The data3 Usual statistics { linear, parametric framework4 Conditional logit { non-linear, parametric framework5 Semi-parametric framework (NEW)6 Real interaction with the employer, statistical discriminationAeberhardt, Fougere, Pouget and Rathelot () Testing 15 juin 2009 3 / 28Introduction2 main types of studies to measure discriminationDiscrimination on the labor market arises whenever an employer treatsdi erently, on average, individuals whose productive characteristics areequal but whose non productive characteristics such as gender or racedi er.Methods a la Blinder-Oaxaca: decomposition of a gap between anexplained part and an unexplained part.the unexplained part is not necessarily discrimination.Controlled experiments: \audit studies" / \testing"\C teris paribus ": \testers" are matched to be similarWith 2 \testers" (or more) for each job o er, it ...
Voir icon arrow

Publié par

Langue

English

rebedrahA,PregeouFot,`eugeTletoaRhtatdn0091uin2g15jstin
15 juin 2009
CREST-INSEE
RomainAeberhardtDenisFouge`re Julien Pouget Roland Rathelot
Testing with the Testers What can we learn from an “audit study”? Journe´esLouis-Andr´eG´erard-Varet#8
82/
15juting092/in20
1
Introduction
The data
2
82
Plan
Semi-parametric framework (NEW)
5
Real interaction with the employer, statistical discrimination
6
Usual statistics – linear, parametric framework
3
Conditional logit – non-linear, parametric framework
4
dtarrhbeAeTeslotatheandRgute,eoP`greF,uo
lanPnItnorudtcoitdF,hrrare,euo`gAebe
5
Conditional logit – non-linear, parametric framework
6
Semi-parametric framework (NEW)
Real interaction with the employer, statistical discrimination
20093/28
Introduction
1
2
The data
3
Usual statistics – linear, parametric framework
4
Ttitse51gnniujugPoanetatdRlohe
e,Pog`erandRugetebhreAF,uoratdtingTeslotathe82
Discrimination on the labor market arises whenever an employertreats differently, on average, individuals whoseproductive characteristics are equalbut whose non productive characteristics such as gender or race differ. Methodsla`aBlinder-Oaxaca of a gap between an: decomposition explained part and an unexplained part. the unexplained part is not necessarily discrimination. Controlled experiments:“audit studies”/ “testi ” ng Cæteris paribus are matched to be similar”: “testers” With 2 “testers” (or more) for each job offer, it is possible to control for unobserved heterogeneity at the firm level.
90/4ni0251ujofstypesainton2mcuitrtdonIontiriscnamiusaeidereidumots
haert,rdebATestotthelndRaegatP,uoe`eroFgu
Discrimination on the labor market arises whenever an employertreats differently, on average, individuals whoseproductive characteristics are equalbut whose non productive characteristics such as gender or race differ. Methodsa`alBlinder-Oaxaca: decomposition of a gap between an explained part and an unexplained part. the unexplained part is not necessarily discrimination. Controlled experiments:“audit studies”/ “testing” Cæteris parib are”: “testers” matched to be similar us With 2 “testers” (or more) for each job offer, it is possible to control for unobserved heterogeneity at the firm level.
82/49002niuj51gnitnIudormircsidenoitani2namtcoieposniytdiesfstuasurtome
utst?ydnamiduaPaofrgexaElemppxremine(s0230e)trontICnoitcudtubirtnoofthionserWepapnaewahctfnorelrauoegerP,gue`,toFTeelotRathtandrdhaerebA2niu5900nitsj51g8/2
Usual statistics: focus on implicit hypotheses (strong) meaning in terms of discrimination (not so clear) Less usual results: Information carried by the observations in terms of “discrimination” – unobserved heterogeneity at the firm levelNon-linear framework –“Conditional Logit” Semi-parametric set-identificationNEWonly the sign of the effect is identified and not its magnitude Use of the specificity of the data: Testers alternate the role of the potentially discriminated candidate Taking into account tester’s unobserved heterogeneity (Heck ’ man s critique)
epiremtndutinaarfmoaenrnwelatcarWhpapexe)3002(sregaPfeoplamEx?yudstosnoehtfirtnitubtiucCoonInodtr/59002ni
Usual statistics: focus on implicit hypotheses (strong) meaning in terms of discrimination (not so clear) Less usual results: Information carried by the observations in terms of “discrimination” – unobserved heterogeneity at the firm levelNon-linear framework –“Conditional Logit” Semi-parametric set-identificationNEWonly the sign of the effect is identified and not its magnitude Use of the specificity of the data: Testers alternate the role of the potentially discriminated candidate Taking into account tester’s unobserved heterogeneity (Heckman s critique)
82Teslot15jutinggute,eoPtaehnaRduoF,re`ghrebtdraAe
juinng155/282009eholRdtaseittTe,erg`ouanetugPoebeAF,tdrahr
Usual statistics: focus on implicit hypotheses (strong) meaning in terms of discrimination (not so clear) Less usual results: Information carried by the observations in terms of “discrimination” – unobserved heterogeneity at the firm levelNon-linear framework –“Conditional Logit” Semi-parametric set-identificationNEWonly the sign of the effect is identified and not its magnitude Use of the specificity of the data: Testers alternate the role of the potentially discriminated candidate Taking into account tester’s unobserved heterogeneity (Heckman’s critique)
trInucoderag(2splamfPeoemirtn)300epxeomanrnfreleacanw?xEduytitsaduontiburintCoontitahWrepapehtfos
nalPaatedTheAebe,erg`ou,FdtarrholehtaRdnateguoPng15juintTesti
Introduction
2
1
3
The data
4
Usual statistics – linear, parametric framework
0290/682
Semi-parametric framework (NEW)
6
Conditional logit – non-linear, parametric framework
5
Real interaction with the employer, statistical discrimination
in2015jutingTesolttaehnaRdgutePoe,erg`ou,FdtarhrebeA7/09
4 black “testers” and 3 white “testers” Students at the University of Milwaukee Black and White testers applied to different sets of jobs The black “testers” went to 200 interviews and the white ones to 150 Low-qualified jobs which require no more than a high-school level No competition between the “testers” Each “tester” played alternatively the role of the ex-offender or of the reference candidate This will allow us to take into account “tester effects and to answer Heckman’s critique Evidence of statistical discrimination using the fact that there was not always a real interview with the employer
28ThevaDatedpistwDeerkofheMaeg(rhaaP)oH0230irCaanimceRl?dro
Real interaction with the employer, statistical discrimination
6
Semi-parametric framework (NEW)
5
Conditional logit – non-linear, parametric framework
4
Usual statistics – linear, parametric framework
alnroPkmetrparaamewicfrscitsita,raenilstalsuUberhardt,Foug`er,eoPgutenaRdtaehtloesTngtiju1502ni/890
Introduction
82
3
The data
2
1
eA
Voir icon more
Alternate Text