On a partition calculus of partial orders

icon

65

pages

icon

English

icon

Documents

Écrit par

Publié par

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

65

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

On a partition calculus ofpartial ordersTam as atraiM Alfred Renyi InstituteStarkvilleMarch 20, 2010www.renyi.hu/ matraitonoo::ooooooooooo:ooooooooooolo:The purposetheory of co nal similarity types;Tukey reductions: Moore-Smith convergence;topological aspects of the theory;combinatorial aspects of the theory.pDѤ¤:Ѥ¤qloDooooooo:oooo:oo¤qoooooooooooãonDpp:¤Ñ¤qco nally similar: R; u.d.p.o. set,P;Q R into co nal subsetsTukey reducible: P Q if g : Q P,Tg maps co nal subsets to co nal subsetsEasy observations:P, Q are co nally similar if and only if P Q, i.e.TP Q and Q PT TP Q if and only if f : P Q,Tf maps unbounded subsets to unbounded subsetsCo nal typesP; , Q; upward directed partially ordered setsp¤D¤¤qã:ÑDloÑooooooo¤qoooo¤oo¤qooooooooooo¤onDpp:Ñ::Tukey reducible: P Q if g : Q P,Tg maps co nal subsets to co nal subsetsEasy observations:P, Q are co nally similar if and only if P Q, i.e.TP Q and Q PT TP Q if and only if f : P Q,Tf maps unbounded subsets to unbounded subsetsCo nal typesP; , Q; upward directed partially ordered setsco nally similar: R; u.d.p.o. set,P;Q R into co nal subsetsÑѤѤq:¤:¤lo¤oooooooooooDoo¤qooooooooooo:on:pãDpD¤qpEasy observations:P, Q are co nally similar if and only if P Q, i.e.TP Q and Q PT TP Q if and only if f : P Q,Tf maps unbounded subsets to unbounded subsetsCo nal typesP; , Q; upward directed partially ...
Voir icon arrow

Publié par

Langue

English


On a partition calculus of
partial orders
Tam as atraiM
Alfred Renyi Institute
Starkville
March 20, 2010
www.renyi.hu/ matraiton
oo
:
:
ooooooooooo
:
ooooooooooo
lo
:
The purpose
theory of co nal similarity types;
Tukey reductions: Moore-Smith convergence;
topological aspects of the theory;
combinatorial aspects of the theory.p
D
Ñ
¤
¤
:
Ñ
¤
¤q
lo
D
ooooooo
:
oooo
:
oo
¤q
ooooooooooo
ã
on
Dp
p
:
¤
Ñ

¤q
co nally similar: R; u.d.p.o. set,
P;Q R into co nal subsets
Tukey reducible: P Q if g : Q P,T
g maps co nal subsets to co nal subsets
Easy observations:
P, Q are co nally similar if and only if P Q, i.e.T
P Q and Q PT T
P Q if and only if f : P Q,T
f maps unbounded subsets to unbounded subsets
Co nal types
P; , Q; upward directed partially ordered setsp
¤
D
¤
¤q
ã
:
Ñ
D
lo
Ñ
ooooooo
¤q
oooo
¤
oo
¤q
ooooooooooo
¤
on
Dp
p
:
Ñ
:
:

Tukey reducible: P Q if g : Q P,T
g maps co nal subsets to co nal subsets
Easy observations:
P, Q are co nally similar if and only if P Q, i.e.T
P Q and Q PT T
P Q if and only if f : P Q,T
f maps unbounded subsets to unbounded subsets
Co nal types
P; , Q; upward directed partially ordered sets
co nally similar: R; u.d.p.o. set,
P;Q R into co nal subsetsÑ
Ñ
¤
Ñ
¤q
:
¤
:
¤
lo
¤
ooooooo

oooo
D
oo
¤q
ooooooooooo
:
on
:
p
ã
Dp
D
¤q
p
Easy observations:
P, Q are co nally similar if and only if P Q, i.e.T
P Q and Q PT T
P Q if and only if f : P Q,T
f maps unbounded subsets to unbounded subsets
Co nal types
P; , Q; upward directed partially ordered sets
co nally similar: R; u.d.p.o. set,
P;Q R into co nal subsets
Tukey reducible: P Q if g : Q P,T
g maps co nal subsets to co nal subsetsp
:
D
D
¤q
Ñ
Dp
:
ã
lo
Ñ
ooooooo
¤
oooo
¤
oo
¤q
ooooooooooo
Ñ
on
¤
p
¤q
:
:

¤
P Q if and only if f : P Q,T
f maps unbounded subsets to unbounded subsets
Co nal types
P; , Q; upward directed partially ordered sets
co nally similar: R; u.d.p.o. set,
P;Q R into co nal subsets
Tukey reducible: P Q if g : Q P,T
g maps co nal subsets to co nal subsets
Easy observations:
P, Q are co nally similar if and only if P Q, i.e.T
P Q and Q PT Tp
ã
D

:
¤
Ñ
¤
:
lo
¤q
ooooooo
D
oooo
Ñ
oo
¤q
ooooooooooo
¤
on
Ñ
p
Dp
:
:
¤
¤q
Co nal types
P; , Q; upward directed partially ordered sets
co nally similar: R; u.d.p.o. set,
P;Q R into co nal subsets
Tukey reducible: P Q if g : Q P,T
g maps co nal subsets to co nal subsets
Easy observations:
P, Q are co nally similar if and only if P Q, i.e.T
P Q and Q PT T
P Q if and only if f : P Q,T
f maps unbounded subsets to unbounded subsetsp
:
q
q
p
p
q
lo
:
oooooooooo
q
oo
p
oooooooooo
:
on
„q
:
p

p
:
„q
T. Bartosynski: Tukey reductions account for all inequalities
in the Cichon diagram;
S. Todorcevic: co nal types of d.p.o. sets of cardinality ! is1
unclassi able in ZFC;
D. Fremlin: the Maharam type of a (. . . ) measure space
X; is determined by the co nal type of N ; ;X;
D. Fremlin: a characterization of some topological properties
of X in terms of the co nal type of K X ; ;
analytic ideals: I P ! such that I is analytic, ideal;
The historyp
p
q
:
q
„q
p
lo
„q
oooooooooo
q
oo
:
oooooooooo

on
:
:
:
q
p
p
p
S. Todorcevic: co nal types of d.p.o. sets of cardinality ! is1
unclassi able in ZFC;
D. Fremlin: the Maharam type of a (. . . ) measure space
X; is determined by the co nal type of N ; ;X;
D. Fremlin: a characterization of some topological properties
of X in terms of the co nal type of K X ; ;
analytic ideals: I P ! such that I is analytic, ideal;
The history
T. Bartosynski: Tukey reductions account for all inequalities
in the Cichon diagram;:
p
p
q
:
p
:
lo
„q
oooooooooo
q
oo
p
oooooooooo

on
p
:
q
p
:
q
„q
D. Fremlin: the Maharam type of a (. . . ) measure space
X; is determined by the co nal type of N ; ;X;
D. Fremlin: a characterization of some topological properties
of X in terms of the co nal type of K X ; ;
analytic ideals: I P ! such that I is analytic, ideal;
The history
T. Bartosynski: Tukey reductions account for all inequalities
in the Cichon diagram;
S. Todorcevic: co nal types of d.p.o. sets of cardinality ! is1
unclassi able in ZFC;

Voir icon more
Alternate Text