Lesson 1.6 - …or what is a so rational about these functions?

icon

45

pages

icon

English

icon

Documents

Écrit par

Publié par

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

45

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

Mini-Quiz #2Lesson 1.6 Rational FunctionsLesson 1.6. . . or what is a so rational about these functions?Jeff MeyerJanuary 20, 2009Jeff Meyer Math 115 - Section 13Mini-Quiz #2Lesson 1.6 Rational FunctionsOutline1 Mini-Quiz #22 Lesson 1.6 Rational FunctionsJeff Meyer Math 115 - Section 13Mini-Quiz #2Lesson 1.6 Rational FunctionsMini-Quiz #2QuestionState whether each of the following is odd, even, or neither.21 x12x132x14 x +x15 x +2xJeff Meyer Math 115 - Section 13Mini-Quiz #2Lesson 1.6 Rational FunctionsMini-Quiz #2QuestionState whether each of the following is odd, even, or neither.21 x Even12 Oddx13 Even2x14 x + Oddx15 x + Neither2xJeff Meyer Math 115 - Section 13Mini-Quiz #2Lesson 1.6 Rational FunctionsRecall From Last TimeGoal of Chapter 1(Re-)Introduce basic functions and their propertiesBig Ideas From Last ClassIntroduced the concepts of sine, cosine, and tangentfunctions.Emphasized going between verbal, symbolic, andgraphical descriptions.Jeff Meyer Math 115 - Section 13Mini-Quiz #2Lesson 1.6 Rational FunctionsRecall From Last TimeGoal of Chapter 1(Re-)Introduce basic functions and their propertiesBig Ideas From Last ClassIntroduced the concepts of sine, cosine, and tangentfunctions.Emphasized going between verbal, symbolic, andgraphical descriptions.Jeff Meyer Math 115 - Section 13Mini-Quiz #2Lesson 1.6 Rational FunctionsAlgebraically building functions fromxBuild functions using only ...
Voir icon arrow

Publié par

Langue

English

Mini-Quiz#2Lessno.1R6taoianFlnuioctnseyeMffeJ511htaMr31
Lesson 1.6
Jeff Meyer
. . . or what is a so rational about these functions?
January 20, 2009
S-ceitno
Lesson 1.6 Rational
2
1
Mini-Quiz #2
Functions
15h1ec-Sonti
Outline
132#zisseLniMuQ-inaiounlF1.onat6RsntcoiatrMyeMeffJe
inQ-iu#zL2seos1nMi-iniMsno2#ziuQontiRa.6tincFualath115-SffMeyerMeJ
Question State whether each of the following is odd, even, or neither. 1x2 1 2 x 1 3 x2 1 4x+ x 1 5x+x2
31noitce
izQui-inonssLe#2oitaR6.1tcnuFlanMionsMini-Quiz#2atrMyeMeffJeitno31
Neither
1h51S-ce
Odd
Even
Odd
Question State whether each of the following is odd, even, or neither. 1x2Even 1 2 x 1 3 x2 1 4x+ x 1 5x+x2
ecti15-Sath1yerM
Goal of Chapter 1 (Re-)Introduce basic functions and their properties
Big Ideas From Last Class Introduced the concepts of sine, cosine, and tangent functions. Emphasized going between verbal, symbolic, and graphical descriptions.
no31eJeMffiMinmiesRecallFromLastTitaRlanocnuFnoitui-Q2Lz#soes.6n1
L2#ziuQ-iniMseos1n6.aRitnolaFunctionsRecallFLmorTtsaemita1heyMrffeMeJS-51itce31no
Big Ideas From Last Class Introduced the concepts of sine, cosine, and tangent functions. Emphasized going between verbal, symbolic, and graphical descriptions.
Goal of Chapter 1 (Re-)Introduce basic functions and their properties
raeblgsAbulyaliclanoitaRnoitcnuFromxgnufliidnofscnit-Quiz#2Lesson1.6iMin
Terminology Letfbe a polynomial function. The largest natural number for whichanis not zero is the DEGREEoff.
Sect115-3
Definition (Multiply) A POWERFUNCTIONis a function of the form f(x) =axkfor constantsa,k (Add) A POLYNOMIALFUNCTIONis a function of the form f(x) =anxn+an1xn1+∙ ∙ ∙+a1x+a0for constants an,an1, . . . ,a0and natual numbers 1,2, . . .n. (Divide) A RATIONALFUNCTIONis a function of the form gf((xx))wheref(x)andg(x)are polynomial functions.
Build functions using only algebraic operations onx
ion1feMfJaMhtyere
2Lz#ui-QniMisoes.6n1tiRaaloncnuFnoitglAsarbeicallybuildingfucnitnofsorxm5-11ctSeereythMaJMffe
Definition (Multiply) A POWERFUNCTIONis a function of the form f(x) =axkfor constantsa,k (Add) A POLYNOMIALFUNCTIONis a function of the form f(x) =anxn+an1xn1+∙ ∙ ∙+a1x+a0for constants an,an1, . . . ,a0and natual numbers 1,2, . . .n. (Divide) A RATIONALFUNCTIONis a function of the form gf((xx))wheref(x)andg(x)are polynomial functions.
Build functions using only algebraic operations onx
3n1io
Terminology Letfbe a polynomial function. The largest natural number for whichanis not zero is the DEGREEoff.
orxmitnouFcnnolaaRitn1.6essoz#2L-QuifsnoitcnufgnidlibulyalicraeblgsAiniM
Terminology Letfbe a polynomial function. The largest natural number for whichanis not zero is the DEGREEoff.
ion13
Definition (Multiply) A POWERFUNCTIONis a function of the form f(x) =axkfor constantsa,k (Add) A POLYNOMIALFUNCTIONis a function of the form f(x) =anxn+an1xn1+∙ ∙ ∙+a1x+a0for constants an,an1, . . . ,a0and natual numbers 1,2, . . .n. (Divide) A RATIONALFUNCTIONis a function of the form fg((xx))wheref(x)andg(x)are polynomial functions.
Build functions using only algebraic operations onx
115-SecthtaMreyeMffeJ
effMJ
Terminology Letfbe a polynomial function. The largest natural number for whichanis not zero is the DEGREEoff.
1noi
Build functions using only algebraic operations onx
Definition (Multiply) A POWERFUNCTIONis a function of the form f(x) =axkfor constantsa,k (Add) A POLYNOMIALFUNCTIONis a function of the form f(x) =anxn+an1xn1+∙ ∙ ∙+a1x+a0for constants an,an1, . . . ,a0and natual numbers 1,2, . . .n. (Divide) A RATIONALFUNCTIONis a function of the form fg((xx))wheref(x)andg(x)are polynomial functions.
35-11ctSeereythMaitcnfsnoxmoritnouFcnbearAsgllybuicalngfuildiiniML2#ziuQ-.6n1soesalontiRa
S-51itceMrey1hta13on
What you should get out of lesson. . . Given a rational function, you should be able to determine its Domain. Zeros End behavior.
Note All power functions with natural number exponents are polynomials. All polynomials are rational functions. Do NOT confuse power functionsxkwith exponential functionsax. They have very different properties.
Remarks
JeffMeMiniseos1n6.Q-iu#zL2ncFuontitiRaalons
Voir icon more
Alternate Text