InterCell Escapade Tutorial

icon

39

pages

icon

English

icon

Documents

Écrit par

Publié par

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

39

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

Diusion/Heat Equation Derive a Cellular Algorithm Running on InterCellInterCell/Escapade TutorialN. FressengeasLaboratoire Materiaux Optiques, Photonique et SystemesUnite de Recherche commune a l’Universite Paul Verlaine Metz et a SupelecDowload this document fromhttp://intercell.metz.supelec.frN. Fressengeas LMOPSInterCell/EscapadeDiusion/Heat Equation Derive a Cellular Algorithm Running on InterCellTable of contentsFick Di usion or Heat Transfer laws as an exampleFick/Heat lawsBoundary ConditionsDerive a Cellular AlgorithmInstall the necessary softwareDiscretize your problemLocate your equations on the MeshRunning on InterCellA look at the lesRun the programSee the resultsN. Fressengeas LMOPSInterCell/EscapadeDiusion/Heat Equation Derive a Cellular Algorithm Running on InterCellFick/Heat lawsSteady state Fick/Heat di usion lawsA fairly simple partial di erential problem for didactic purposeFick laws Di usion lawsI IJ = Cgrad () q = kgrad (T )@ @TI I+div (J) = 0 C +div (q) = 0@t @t@ @TI I= C4 C = k4T@t @tSteady state lawSteady state law4 = 0 4T = 0N. Fressengeas LMOPSInterCell/EscapadeDiusion/Heat Equation Derive a Cellular Algorithm Running on InterCellBoundary ConditionsSome boundary conditionsComplexity often lies in the boundary conditionsTJPure diusionqJqBoundary conditionsI Constant ow pipes : J = J = Cgrad ()0@ @I grad (J)kBoxborders : = 0 or = 0@x @yI Dirichlet : constantN. ...
Voir icon arrow

Publié par

Nombre de lectures

12

Langue

English

Diusion/HeatEqauitnoeDirevCalelalulgrAitorRuhmninnInogretnlleCrF.NesseaegnsEacaped
LaboratoireMate´riauxOptiques,PhotoniqueetSyst`emes Unit´edeRecherchecommune`alUniversit´ePaulVerlaineMetzeta`Sup´elec
LMOPS
N. Fressengeas
Dowload this document from http://intercell.metz.supelec.fr
InterCell/Escapade Tutorial
sInterCell/
csE/lleCretnI
Running on InterCell A look at the files Run the program See the results
Derive a Cellular Algorithm Install the necessary software Discretize your problem Locate your equations on the Mesh
Fick Diffusion or Heat Transfer laws as an example Fick/Heat laws Boundary Conditions
Table of contents
LMOPS
eadapasengeressN.FiDirevnoeDulalCalen/HeusiouatiatEqllCenIgoerntuRmhninnglArtiro
seesgnae.NrFrCtel/elsIn
Fick laws IJ=Cgrad(ρ) Itρ+div(J) = 0 Iρt=C4ρ Steady state law 4ρ= 0
Steady state Fick/Heat diffusion laws A fairly simple partial differential problem for didactic purpose
Fick/Heat laws
Diffusion laws Iq=kgrad(T) ICTt+div(q) = 0 ICTt=k4T Steady state law 4T= 0
LMOPS
acsEedapea/HqutEuDionsionInningellterCoglAralunuRmhtirernDioatllCeeaiv
de
Boundary conditions IConstant flow pipes :J=J0=Cgrad(ρ) Igrad(J)kBox borders:ρx= 0 orρy= 0 IDirichlet :ρconstant
J q
Pure diffusion
J q
ρ T
PSMOsLeangseesFrapacsE/lleCretnI.NtidnoCyradnuoBllCeerntnIgoinnnRupmelsnoCtioiocdndarybounSomeions/noitaeHDsuiglrotimhleulalArDeriveaCEquationbohedauncoryitndytixetfoeilntnisoisn
betvaierolgedCoadailauel.gNlrAFraigteo-r4R.uxh/msiangnenmniIgghoCret/lleaDcsEiesduaopisne/eHseeaatnEgquastiIonnDe
LMOPS
SAGE IGNU Free formal computing software IPoint your browser tohttp://www.sagemath.org IDownload, install and learn to useSAGE(Pythonsyntax) IMake sure thesagecommand is available1
GPL License
Install the necessary software
Formal computing software SAGEis what you need
llCeernt1Aln-s.../s
iusion/DrAlaorlgaCveluelnoitireDtaeHauqEllerCeIntnnioguRnntimh.FreN
LMOPS
escabooz.sage IA piece of software written inSAGE IInstall usingmake install ISAGEsyntax to formally describe your differential problem IWrites aset of files(*.booz&*.cell) to describe the cellular algorithm
Install the necessary software
InterCellsoftware to derive the Cellular Algorithm Downloadescabooz.sgaefromInterCellweb site
llE/reeCdaecspageasssenInt
Running the script IStartSAGE ILoad the script IWrite the files
Differential problem specification A shortSAGE/Pythonscript
LMOPS
Install the necessary software
acaped
TheSAGEscript file IDefine a discrete differential problem IDefine discrete boundary conditions Iset up constants and observers IFeed all this to oneEscapadeobject IThis object can write the files for you
rCell/EsInteCeerntnIgoinnnRumhtiroglAralulleveaCDeritionEquaeHtaoi/nisuDllsengeasN.Fres
leletCr/HeatEquationDeriDuisnothriunmRngniInonaevilleCraluoglArFse.NaesesgnIntel/EsrCel
Declare your unknowns and constants
LMOPS
Declare the unknownsyou are seeking # Declare the unknown as an unknown function rho=function("rho")
Declare the constants you will be using # Declare the constants you will use formally # It is usually a good idea to have dx and dy declared # We take here dx=dy=dr var("J0 C dr")
de
Discretize your problem
capa
.NserFgnessaeteInelrCEsl/ed
Finite Differences will be used Let us define some expressions that will be needed several times Center second order derivatives SecondDerivativeX =(rho(-1,0)+rho(+1,0)-2*rho(0,0))/dr^2 SecondDerivativeY =(rho(0,-1)+rho(0,+1)-2*rho(0,0))/dr^2
acap
LMOPS
Discretize your problem
Off-centered first order derivatives UpDerivative=(rho(0,0)-rho(0,-1))/dr DownDerivative=(rho(0,+1)-rho(0,0))/dr LeftDerivative=(rho(+1,0)-rho(0,0))/dr RightDerivative=(rho(0,0)-rho(-1,0))/dr
eCrellognitnInhmitnnRurAlaorlgevCaleulitnoeDirHeatEquaiusion/D
theequation"==0"unllaLlpcaai#nnI#Dcrisizetheetziteqedeitaunolyonasonmenteelere:eoihnsihthtlelyonvehaatqueeonmmoebnaceW#detti]YrivativeSecondDeitav+XevdnocireDanciSe=[uleqlaapgoAlthrillCearulnInoCretnuRmgninsion/HeaDiuDnreviaeEtuqtaoircsidlareneGellN.FressengeasPOMLtnISeCreE/llapscead
Set up your discretized equation
4ρ= 0
Discretization is at your convenience IYou can use 5 (or more) points to improve derivative accuracy IYou can attempt stabilization using Lax method I !Call in all your discretization skills
Discretize your problem
Discretize your problem
LMOPS
And with several coupled equations ?
apedsEacle/l
General discretized equation4ρ= 0 equlaplacian=[SecondDerivativeX+SecondDerivativeY]
equlaplacianis alist IAdd equations as list elements ILeast Squares will treat them equally
Good normalization practice ISame order of magnitude required for each IIf not : only the highest will be solved. . . mess foreseen
rF.NesseInrCteeangsiousiDeDnoitauqEtaeH/nlularAlgriveaCelnnniogInrotimhuRerntllCe
Voir icon more
Alternate Text