ggordon.MCMC-tutorial

icon

54

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

54

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

Monte Carlo MethodsGeoff Gordonggordon@cs.cmu.eduFebruary 9, 2006Numerical integration problem543210−1−0.5010.50.80.60.40.20−0.2−0.4−0.61−0.8−1XYZf(x)dxx2Xf(X,Y)Used for: function approximationf(x) f (x) + f (x) + : : :1 1 2 2R R2Orthonormal system: f (x) dx = 1 and f (x)f (x)dx = 0i i j Fourier (sin x, cos x, . . . )2 3 Chebyshev (1, x, 2x 1, 4x 3x, . . . ) . . .Coefficients areZ = f(x)f (x)dxi iUsed for: optimizationOptimization problem: minimize T(x) for x2XAssume unique global optimum xDefine Gibbs distribution with temperature 1= for > 0:1P (x) = exp( T(x))Z()As !1, have E (x)! xxPRSimulated annealing: track E (x) = xP (x)dx as !1 Used for: Bayes net inferenceUndirected Bayes net on x = x ; x ; : : ::1 2Y1P(x) = (x)jZjTypical inference problem: compute E(x )iBelief propagation is fast if argument lists of s are small and form ajjunction treeIf not, MCMCUsed for: SLAMUsed forImage segmentationTracking radar/sonar returnsOutlineUniform sampling, importance samplingMCMC and Metropolis-Hastings algorithmWhat if f(x) has internal structure: SIS, SIR (particle filter) Gibbs samplerCombining SIR w/ MCMCA one-dimensional problem706050403020100−1 −0.5 0 0.5 1Uniform sampling706050403020100−1 −0.5 0 0.5 1true integral 24.0; uniform sampling 14.7 w/ 30 samplesUniform samplingPick an x uniformly at random fromXZE(f(x)) = P(x)f(x)dxZ1= ...
Voir icon arrow

Publié par

Langue

English

Monte
Carlo
Methods
Geoff Gordon
ggordon@cs.cmu.edu
February
9,
2006
Numerical integration problem
-1
5
4
3
2
1
0
-0.5
0
0.50.20.40.60.81 1 0.4 -0.2 0 X -1 0.8 -0.6 --Y
Zx∈Xf(x)dx
Used for: f
unctiaopnproximation
f(x)α1f1(x) +α2f2(x) +. . .
Orthonormal system:Rfi(x)2dx= 1andRfi(x)fj(x)dx= 0
Fourier (sinx,cosx . . ), .
Chebyshev (1,x,2x21,4x33x . . ), .
. . .
Coefcieanrtes
αi=Zf(x)fi(x)dx
Used for: optimization
Optimization problem: minimizeT(x)forx∈ X
Assume unique global optimumx
DeneGibbs distribution with temperature1forβ >0:
As,ahve
Pβ(x) =Z(1βp(ex)βT(x))
β→ ∞ExPβ(x)xSimulated annealing: trackEβ(x) =RxPβ(x)dxasβ→ ∞
Used for: Bayes net inference
Undirected Bayes net onx=x1, x2, . . .: P1=Y (x)Zjφj(x)
yTpicalinferencerpboelm:ocpmtue
E(xi)
Belief propagation is fast if argument lists ofφj junction tree
If not, MCMC
s are small and form a
Used
for
:
SLAM
Used
for
Image segmentation
Tracking
radar/sonar
returns
Outline
Uniform sampling, importance sampling
MCMC and Metropolis-Hastings algorithm
What iff(x)has internal structure:
IS,SIS(Raptriclelter)
Gibbs sampler
Combining SIR w/ MCMC
A
one-dimensional
70
60
50
40
30
20
10
01
problem
�0.5
0
0.5
1
Uniform sampling
70
60
50
40
30
20
10
01
�0.5
0
0.5
1
true integral 24.0; uniform sampling 14.7 w/ 30 samples
Uniform sampling
Pick anxuniformly at random f
E(f(x)) =
whereVis volume ofX
=
SoE(V f(x)) =desired integral
rXom ZP(x)f(x)dx V1Zf(x)dx
Butvariancecanbebig(.iefsVp large)
Voir icon more
Alternate Text