ens-mellies-cours-3

icon

44

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

44

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

Lambda calculs et catégoriesPaul-André MellièsMaster Parisien de Recherche en InformatiqueParis, Octobre 20101Plan de la séance1 – Lambda-calcul typé du second ordre2 – Une sémantique opérationnelle3 – Une topologie4 – Les variétés comme type sémantique5 – Théorème fondamental6 – Application: théorème de normalisation2Part ISecond order lambda calculusPolymorphism3Curry 1958: the simply typed-calculusIt is possible to type the-terms by simple typesA;B constructed by the grammar:A;B::=j A) B:A typing context is a finite list = (x : A ;:::;x : A ) where x is a variable and A1 1 n n i iis a simple type, for all1 i n.A sequent is a triple:x : A ;:::;x : A ‘ P: Bn n1 1where x : A ;:::;x : A is a typing context, P is a-term and B is a simple type.1 1 n n4Curry 1958: the simply-typed-calculusVariablex: A‘ x: A;x: A‘ P: BAbstraction‘x:P: A) B‘ P: A) B ‘ Q: AApplication; ‘ PQ: B‘ P: BWeakening;x: A‘ P: B;x: A;y:A‘ P: BContraction;z: A‘ P[x;y z]: B;x: A;y: B; ‘ P: CPermutation;y: B;x: A; ‘ P: C5Girard 1972: second-order-calculusThe idea is to extend the usual simply typed lambda-calculus with second-orderquantification on type variables.Types are simple types extended with second-order variables:A;B::=j A) Bj8 : AA typing context is a finite list constructed by the grammar= nil j ;x: A j ;where:o nil is the empty listo x is a term variable and A is a type,o is a type variable.6Girard 1972: ...
Voir icon arrow

Publié par

Langue

English

Lambda calculsetcatégories
Paul-André Melliès
Master Parisien de Recherche en Informatique
Paris, Octobre 2010
1
Plan de la séance
1 – Lambda-calcul typé du second ordre
2 – Une sémantique opérationnelle
3 – Une topologie
4 – Les variétés comme type sémantique
5 – Théorème fondamental
6 – Application: théorème de normalisation
2
Second
Part
order
I
lambda
Polymorphism
calculus
3
Curry 1958: the simply typedλ-calculus It is possible totypetheλ-terms by simple typesA,Bconstructed by the grammar: A,B::=α|AB.
Atyping contextΓis a finite listΓ =(x1:A1, ...,xn:An)wherexiis a variable andAi is a simple type, for all1in.
Aeutnsqeis a triple:
x1:A1, ...,xn:An`P:B wherex1:A1, ...,xn:Anis a typing context,Pis aλ-term andBis a simple type.
4
Curry 1958: the simply-typedλ-calculus
Variable
Abstraction
Application
Weakening
Contraction
Permutation
x:A`x:A
Γ,x:A`P:B Γ`λx.P:AB
Γ`P:ABΔ`Q:A Γ,Δ`PQ:B
Γ`P:B Γ,x:A`P:B
Γ,x:A,y:A`P:B Γ,z:A`P[x,yz] :B
Γ,x:A,y:B,Δ`P:C Γ,y:B,x:A,Δ`P:C
5
Girard 1972: second-orderλ-calculus
The idea is to extend the usual simply typed lambda-calculus with second-order quantification on type variables.
Types are simple types extended with second-order variables:
A,B::=α|AB| ∀α.A
A typing contextΓis a finite list constructed by the grammar
where:
onilis the empty list
Γ =nil|Γ,x:A|Γ, α
oxis a term variable andAis a type,
oαis a type variable.
6
Girard 1972: second-orderλ-calculus
Second order abstraction
Second order application
Γ,α`P:A Γ`P:α.A
Γ`P:α.A Γ`P:A[α:=B]
7
Properties of second-order polymorphism
Aλ-termPistpydewhen there exists a typing contextΓand a second-order type Asuch that:
Γ`P:A
One establishes that the set of typedλ-terms is closed underβn:ioctdu-ér
Subject Reduction:IfΓ`P:AandP−→βQ, thenΓ`Q:A.
Aλ-termPisstrongly normalizingwhen all the rewriting paths based onβon:ucti-red
terminate.
P−→βP1−→βP2−→ββPn−→β∙ ∙ ∙
Strong normalisation:Every typedλ-termPis strongly normalizing.
8
Curry-Howard (1)
Variable
Abstraction
Application
Weakening
Contraction
Permutation
Minim.al intuitionistic logic
x:A`x:A Γ,x:A`P:B Γ`λx.P:AB Γ`P:ABΔ`Q:A Γ,Δ`PQ:B
Γ`P:B Γ,x:A`P:B
Γ,x:A,y:A`P:B Γ,z:A`P[x,yz] :B
Γ,x:A,y:B,Δ`P:C Γ,y:B,x:A,Δ`P:C
9
Curry-Howard (1)
Variable
Abstraction
Application
Weakening
Contraction
Permutation
sim.pedy-tylpλsculu-cal
x:A`x:A Γ,x:A`P:B Γ`λx.P:AB Γ`P:ABΔ`Q:A Γ,Δ`PQ:B
Γ`P:B Γ,x:A`P:B
Γ,x:A,y:A`P:B Γ,z:A`P[x,yz] :B
Γ,x:A,y:B,Δ`P:C Γ,y:B,x:A,Δ`P:C
9
Curry-Howard for second-order logic
Second order abstraction
Second order application
Γ, α`P:A Γ`P:α.A
Γ`P:α.A Γ`P:A[α:=B]
10
Voir icon more
Alternate Text