Counting chains in noncrossing partition latticesNathan ReadingNC State UniversityNCSU Algebra Seminar, November 16, 20071Counting chains in noncrossing partition latticesClassical noncrossing partitionsCoxeter groups and noncrossing partitionsCounting maximal chains2Classical noncrossing partitions (Kreweras, 1972)Identify the numbers 1,2,...n with n distinct points in cyclic orderon a circle. For each block B of a partition π, draw the convexpolygon whose vertices are the points in B. If |B| is 1 or 2, this“polygon” is a point or a line segment.The partition π is noncrossing if and only if in its planar diagram,the blocks are disjoint (i.e. don’t cross).ExampleCrossing and noncrossing:1 19 2 9 28 3 8 37 4 7 46 5 6 53The classical noncrossing partition latticeOrdered by refinement of partitions. 14 234EnumerationNoncrossing partitionsNoncrossing partitions of [n] are counted by the famous Catalannumbers 1 2nC := .n nn+1ChainsDetailed enumeration formulas exist counting chains (totallyordered subsets) in the noncrossing partition lattice according tothe set of ranks visited. (Edelman, 1980).Maximal chainsn−2There are n maximal chains. There is a nice bijection withparking functions (Stanley, 1997).5Example4−24 = 16 maximal chains for n = 4.6Finite reflection groupsFinite groups W generated by (Euclidean) orthogonal reflections.Examples: symmetry groups of regular polytopes, Weyl groups.Coxeter arrangement A ={All reflecting ...
Identify the numbers 12 nwithndistinct points in cyclic order on a circle. For each blockBof a partitionπ, draw the convex polygon whose vertices are the points inB. If|B|is 1 or 2, this “polygon” is a point or a line segment.
The partitionπisnoncrossingif and only if in its planar diagram, the blocks are disjoint (i.e. don’t cross).
Example Crossing and noncrossing: 1 9 2
8
7
6 5
3
4
8
7
9
1
6 5
2
3
4
3
The
classical
Ordered
by
noncrossing
refinement
of
partition
partitions.
lattice
4
1
3
2
4
Enumeration
Noncrossing partitions Noncrossing partitions of [n] are counted by the famous Catalan numbers
Cn:=n11+2nn
Chains Detailed enumeration formulas exist counting chains (totally ordered subsets) in the noncrossing partition lattice according to the set of ranks visited. (Edelman, 1980).
Maximal chains There arenn−2 is a nice bijection with Theremaximal chains. parking functions (Stanley, 1997).
5
Example
44−2
=
16
maximal
chains
for
n
=
4.
6
Finite reflection groups
Finite groupsWgenerated by (Euclidean) orthogonal reflections. Examples: symmetry groups of regular polytopes, Weyl groups. Coxeter arrangementA={All reflecting hyperplanes forW}. Simple reflections: Fix a connected componentRof the complement ofSA. LetSbe the set of reflections in the facet-hyperplanes ofR.
W=S4:
(3 4)
(2 3)
R
(1 2)
7
Coxeter groups
Coxeter group group with a presentation of the form: a
hS|s2= 1(st)m(st)= 1i
Finite Coxeter groups↔finite reflection groups.
Coxeter diagram the presentation.: encodes •Vertex set:S •Edges:s—twhenm(st)>2, labeled bym(st) when m(st)>3.
IrreducibleCoxeter group: a Coxeter group having a connected diagram.
8
itacfiissalCefiblcidureirofonorpuetgroCexinets
r
r r r
r
r
r r r
F4 H3 H4 I2(m)(m≥5)
E8
9
r r r 4 r r r r❍ ❍✟r r r✟ r r r r r r r r r r r r 4 r r r 5 r r r r5r r m r r
r r r r
E7
An(n≥1) Bn(n≥2) Dn(n≥4) E6
r
r
r
r
r
r r r
r r r r
r
Types A, B and D
• •
•
An−1=Sn: Reflecting hyperplanes arexi=xjfori6=j. Bn(the symmetry group of then-cube orn-octohedron): Reflecting hyperplanes arexi= 0 andxi=±xjfori6=j.
Dn: Reflecting hyperplanes arexi=±xjfori6=j.
01
Intersection lattices
Intersection lattice intersections ofof the Coxeter arrangement: sets of hyperplanes, ordered by reverse inclusion. Key point:The intersection lattice forSnis the lattice of partitions.
S9example:
T{x1=x2x2=x8x3=x7x3=x9x5=x6} l {128}{379}{4}{56}
Bnintersection lattice: partitions of±[n] fixed byi7→ −i, at most one block containing a pair (i−i).
B9example:
T{x1= 0x2= 0x2=−x7 x4=−x9x5=x7x6=x8} l {±1±2±5±7}{3}{−3} {4−9}{−49}{68}{−6−6}