Algorithmic aspects of finite semigroup theory, a tutorial

icon

47

pages

icon

English

icon

Documents

Écrit par

Publié par

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

47

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

Part IGroup radicalGroup radicalThe group radical of a finite monoid M is thesmallest submonoid D(M) of M containing theidempotents and closed under weak conjugation: ifsts =s and d∈D(M), then sdt,tds∈D(M).LIAFA, CNRS and University Paris VIIComputation of the radicalInitialisation : D(M) =E(M)For each d in D(S)For each weakly conjugate pair (s,t)add sdt and tds to D(S)add D(S)d to D(S).3Time complexity in 0(|S| ).LIAFA, CNRS and University Paris VII6Part IISyntactic ordered monoidIf P is a subset of a monoid M, the syntacticpreorder6 is defined on M by u6 v iff, for allP Px,y∈M,xvy∈P ⇒xuy∈P¯Denote by P the complement of P. Then u6 vPiff there exist x,y∈M such that¯xuy∈P and xvy∈PLIAFA, CNRS and University Paris VII1The syntactic ordered monoid of ab in B2∗ ∗1 0∗ aab∗ ∗ab a b ba∗b ba∗ ∗0 1LIAFA, CNRS and University Paris VII66An algorithm for the syntactic preorderLet G be the graph with M×M as set of verticesand edges of the form (ua,va)→ (u,v) or(au,av)→ (u,v).We have seen that u6 v iff there exist x,y∈MPsuch that¯xuy∈P and xvy∈PTherefore, u6 v iff the vertex (u,v) is reachableP¯in G from some vertex of P ×P.LIAFA, CNRS and University Paris VII66The algorithm (2)(1) Label each vertex (u,v) as follows:(0,1) if u∈/ P and v∈P [u6 v]P(1,0) if u∈P and v∈/ P [v6 u]P(1,1) otherwise(2) Do a depth first search (starting from eachvertex labeled by (0,1)) and set to 0 the firstcomponent of the label of all visited vertices ...
Voir icon arrow

Publié par

Langue

English

Group radical
PartI
Group radical
Thegroup radicalof a finite monoidMis the smallest submonoidD(M)ofMcontaining the idempotents and closed under weak conjugation: sts=sanddD(M), thensdt tdsD(M).
if
LIAFA, CNRS and University Paris VII
Computation of the radical
Initialisation:D(M) =E(M)
ForeachdinD(S)
Foreachweakly conjugate pair addsdtandtdstoD(S) addD(S)dtoD(S).
Time complexity in0(|S|3).
(s t)
LIAFA, CNRS and University Paris VII
PartII
Syntactic ordered monoid
IfPis a subset of a monoidM, thesyntactic preorder6Pis defined onMbyu6Pviff, for all x yM, xvyPxuyP
¯ Denote byPtheocelpmtnemofP. Thenu66Pv iff there existx yMsuch that
¯ xuyPandxvyP
LIAFA,CNRSnadUnievsrityParisVII
FA,CLIAisytvirednnURNaStaynesThIIsVriPaionomderedrocitcodafibBn21
ab a bba
a b
ab
0
1
0
1
ba
An algorithm for the syntactic preorder
LetGbe the graph withM×Mas set ofvertices andedgesof the form(ua va)(u v)or (au av)(u v).
We have seen thatu66Pviff there existx yM such that ¯ xuyPandxvyP
Therefore,u66Pviff the vertex(u v)is reachable ¯ inGfrom some vertex ofP×P.
LIAFA, CNRS and University Paris VII
The algorithm (2)
(1)
(2)
(u v)as follows:
Label each vertex (01)ifu PandvP (10)ifuPandv P (11)otherwise
[u66v]
[u66Pv] [v66Pu]
Do a depth first search (starting from each vertex labeled by(01)) and set to0the first component of the label of all visited vertices.
LIAFA, CNRS and University Paris VII
Constraint propagation
(3)
(4)
Do adepth first search(starting from each vertex labeled by(00)or(10)) and set to thesecondcomponent of the label of all visited vertices. The label of each vertex now encodes the syntactic preorderofPas follows: (11)ifuPv 0(1(1)0)fifiuv66PPvu (00)ifuandvare incomparable
0
LIAFA, CNRS and University Paris VII
Computation of the syntactic preorder
LetM={1 a b}withaa=ba=aand ab=bb=b. LetP={a}.
a1
a b
1 b
a a
11
b b
b1
b a
ILFA,ANCRS
1 a
nadUnievrsiytaPirsVII
Computation of the syntactic preorder
LetM={1 a b}withaa=ba=aand ab=bb=b. LetP={a}.
Initial labels
(10) a1
(10) a b
(11) 1 b
(11) a a
(11) 11
(11) b b
(11) b1
(01) b a
ILFA,ACNRS
(01) 1 a
andnUiversiytParisIVI
Computation of the syntactic preorder
LetM={1 a b}withaa=ba=aand ab=bb=b. LetP={a}.
DFS from(b a)
(10) a1
(10) a b
(11) 1 b
(11) a a
(11) 11
(11) b b
(11) b1
(01) b a
ILFA,ANCRS
(01) 1 a
nadnUiversiytParisVII
Computation of the syntactic preorder
LetM={1 a b}withaa=ba=aand ab=bb=b. LetP={a}.
DFS from(b a)
(10) a1
(10) a b
(11) 1 b
(11) a a
(11) 11
(11) b b
(11) b1
(01) b a
ILAFA,CNRS
(01) 1 a
andUnivesrityaPirsIVI
Voir icon more
Alternate Text