Multigrid for nonlinear problems: an overviewVan Emden HensonCenter for Applied Scientific ComputingLawrence Livermore National Laboratoryvhenson@llnl.govhttp://www.casc.gov/CASC/people/hensonJanuary 23, 2003This work was performed, in part, under the auspices of the United States Department of Energy by University of California Lawrence Livermore National Laboratory under contract number W-7405-Eng-48.Outline• Multigrid: a 30-second introduction• The scalar Newton’s method• Newton’s method for systems• Multigrid for Newton’s method: Newton-MG• Nonlinear multigrid: full approximation storage (FAS)• Numerical examples of Newton-MG and FAS2o f 3 8The 1-d Model Problem− ∆u = f• Poisson’s equation: in [0,1], with boundary conditions .u ( 0 ) = u ( 1 ) = 0• Discretized as:2u = u = 0−u +2u −u =h f0 Ni −1 i i +1 iAu = f• Leads to the Matrix equation , where f u 12 − 1 1 fu− 1 2 − 1 22 u f − 1 2 − 133A = , u = , f = u N − 2− 1 2 − 1 f N − 2 u N − 1− 1 2 fN − 1 3o f 3 8Weighted Jacobi Relaxation• Consider the iteration:ω2( n ew ) ( o ld ) ( o ld ) ( o ld )u ← ( 1 − ω ) u + ( u + u + h f )i i i − 1 i + 1 i2• Letting A = D-L-U, the matrix form is:− 1 2 − 1( new ) ( old )u = ( 1 − ω ) I + ωD ( L + U ) u + ωh D f2 − 1( old ).= R u + ωh D fω( ...
Voir