A combinatorial proof of andrews' smallest parts partition function

icon

6

pages

icon

Français

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

6

pages

icon

Français

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Publié par

Langue

Français

A Combinatorial Proof of Andrews’ Smallest Parts Partition Function
Kathy Qing Ji Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin 300071, P.R. China ji@nankai.edu.cn
Submitted: Jan14, 2008; Accepted:Mar 19, 2008; Published: Apr 10, 2008 Mathematics Subject Classification: 05A17, 11P81
Abstract We give a combinatorial proof of Andrews’ smallest parts partition function with the aid of rooted partitions introduced by Chen and the author.
1 Introduction We adopt the common notation on partitions as used in [1].A partitionλof a positive integernis a finite nonincreasing sequence of positive integers λ= (λ1, λ2, . . . ,λr) P r such thatλi=n.Thenλiare called the parts ofλnumber of parts of. Theλis i=1 called the length ofλ, denoted byl(λ).The weight ofλis the sum of parts, denoted by |λ|.We letP(n) denote the set of partitions ofn. Letspt(n) denote the number of smallest parts in all partitions ofnandns(λ) denote the number of the smallest parts inλ, we then have X spt(n) =ns(λ).(1.1) λ∈P(n) Below is a list of the partitions of 4 with their corresponding number of smallest parts. We see thatspt(4) = 10. λ∈ P(4)ns(λ) (4) 1 (3,1) 1 (2,2) 2 (2,1,1) 2 (1,1,1,1) 4
the electronic journal of combinatorics15(2008), #N12
1
Voir icon more
Alternate Text