NOMBRES RELATIFSI) INTRODUCTION1)Des nombres déjà rencontrésDéfinition :Les nombres relatifs sont des nombres composés d'une partie numérique et d'un signe.Ex : +2 ; –3,1On rencontre de tels nombres dans de nombreuses situations :●Étages dans un ascenseur (relatifs au choix du RdC)●Dates (relatives à la naissance de JC)●Températures (relatives à la température ou la glace commence à fondre)●Altitudes (relatives au niveau de la mer)Remarque :●0 est le seul nombre relatif à la fois positif et négatif.●On peut omettre le signe + devant un nombre relatif positif2)« Visualiser » les nombres relatifs sur une droite graduéeDéfinition :Pour graduer une droite, on choisit sur cette droite deux points O et I auxquels on associe les nombres 0 et +1.Chaque point de la droite est alors repéré par un nombre relatif appelé abscisse de ce point.B O I Ax ' x−3 −2 −1 0 +1 +2 +3x x = +3L'abscisse de A se note :A Axde même : = –1,5Bx = 0Ox = +1I3)Comparaison de nombres relatifsPour comparer des nombres relatifs, on peut s'aider d'une droite graduée.Propriété :Si deux nombres sont négatifs, le plus grand est celui dont la partie numérique est la plus petite.Ex :−3 < −1 1,211 > 1,2091 > −2 −2,75 > −2,76−1 < 0 –0,0201 < –0,02005oral p88: 22, 23oral p87: 9, 15p87: 10, 11, 12p89: 35, 36, 39, 40p90: 49II) ADDITION DE NOMBRES RELATIFS1)Les parenthèsesSoit A la somme de +3 et –1On ne peut pas écrire : A = +3 + – 1 = +2On ajoute donc des parenthèses ...
Voir