Research of multidimensional data visualization using feed-forward neural networks ; Tiesioginio sklidimo neuroninių tinklų taikymo daugiamačiams duomenims vizualizuoti tyrimai

icon

24

pages

icon

English

icon

Documents

2008

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

24

pages

icon

English

icon

Documents

2008

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

VILNIUS GEDIMINAS TECHNICAL UNIVERSITY INSTITUTE OF MATHEMATICS AND INFORMATICS Viktor MEDVEDEV RESEARCH OF MULTIDIMENSIONAL DATA VISUALIZATION 2007 Vilnius Technological Sciences, Informatics Engineering (07T) Summary of Doctoral Dissertation USING FEED-FORWARD NEURAL NETWORKS Doctoral dissertation was prepared at the Institute of Mathematics and Prof Dr Habil Gintautas DZEMYDA (Institute of Mathematics and The dissertation is being defended at the Council of Scientific Field of Prof Dr Habil Romualdas BAUŠYS (Vilnius Gediminas Technical Prof Dr Habil Feliksas IVANAUSKAS (Vilnius University, Physical Assoc Prof Dr Regina KULVIETIENĖ (Vilnius Gediminas Technical Prof Dr Habil Rimvydas SIMUTIS (Kaunas University of Technology, Prof Dr Habil Antanas ŽILINSKAS (Institute of Mathematics and Prof Dr Habil Rimantas ŠEINAUSKAS (Kaunas University of Assoc Prof Dr Antanas Leonas LIPEIKA (Institute of Mathematics and The dissertation will be defended at t he public meeting of the Council of Scientific Field of Informatics Engin eering in the Conference and Seminars Center of the Institute of Mathematics and Informatics at 11 a. m. on January The summary of the doctoral dissertation was distributed on 17 December A copy of the doctoral dissertation is avai lable for review at the Library of Vilnius Gediminas Technical University (Saulėtekio al.
Voir icon arrow

Publié le

01 janvier 2008

Nombre de lectures

17

Langue

English

Poids de l'ouvrage

1 Mo

VILNIUS GEDIMINAS TECHNICAL UNIVERSITY
INSTITUTE OF MATHEMATICS AND INFORMATICS
Viktor MEDVEDEV
RESEARCH OF
MULTIDIMENSIONAL DATA VISUALIZATION

2007 Vilnius
Technological Sciences, Informatics Engineering (07T)
Summary of Doctoral Dissertation
USING FEED-FORWARD NEURAL NETWORKS Doctoral dissertation was prepared at the Institute of Mathematics and
Prof Dr Habil Gintautas DZEMYDA (Institute of Mathematics and
The dissertation is being defended at the Council of Scientific Field of
Prof Dr Habil Romualdas BAUŠYS (Vilnius Gediminas Technical
Prof Dr Habil Feliksas IVANAUSKAS (Vilnius University, Physical
Assoc Prof Dr Regina KULVIETIENĖ (Vilnius Gediminas Technical
Prof Dr Habil Rimvydas SIMUTIS (Kaunas University of Technology,
Prof Dr Habil Antanas ŽILINSKAS (Institute of Mathematics and
Prof Dr Habil Rimantas ŠEINAUSKAS (Kaunas University of
Assoc Prof Dr Antanas Leonas LIPEIKA (Institute of Mathematics and
The dissertation will be defended at t he public meeting of the Council of
Scientific Field of Informatics Engin eering in the Conference and Seminars
Center of the Institute of Mathematics and Informatics at 11 a. m. on January
The summary of the doctoral dissertation was distributed on 17 December
A copy of the doctoral dissertation is avai lable for review at the Library of
Vilnius Gediminas Technical University (Saulėtekio al. 14, LT-10223 Vilnius,
Lithuania) and at the Library of In stitute of Mathematics and Informatics

© Viktor Medvedev, 2007
(Akademijos g. 4, LT-08663 Vilnius, Lithuania)
2007.
e-mail: doktor@adm.vgtu.lt
74 4956; fax +370 5 270 0112; Tel.: +370 5 274 4952, +370 5 2
Address: Goštauto str. 12, LT-01108 Vilnius, Lithuania.
17 2008.
Informatics Engineering – 07T). Informatics, Technological Sciences,
Informatics Engineering – 07T), Technology, Technological Sciences,
Opponents:
Informatics Engineering – 07T). Informatics, Technological Sciences,
Technological Sciences, Informatics Engineering – 07T),
University, Technological Sciences, Informatics Engineering – 07T),
Sciences, Informatics – 09P),
Members:
University, Technological Sciences, Informatics Engineering – 07T).
Chairman:
Informatics Engineering at Vilnius Gediminas Technical University:
Informatics Engineering – 07T). Informatics, Technological Sciences,
Scientific Supervisor
Informatics in 2003–2007. VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS
MATEMATIKOS IR INFORMATIKOS INSTITUTAS
Viktor MEDVEDEV
TIESIOGINIO SKLIDIMO
NEURONINIŲ TINKLŲ TAIKYMO
DAUGIAMAČIAMS DUOMENIMS
VIZUALIZUOTI TYRIMAI

2007 Vilnius
Technologijos mokslai, informatikos inžinerija (07T)
Daktaro disertacijos santrauka prof. habil. dr. Gintautas DZEMYDA (Matematikos ir informatikos
Disertacija ginama Vilniaus Gedimino technikos universiteto Informatikos
prof. habil. dr. Romualdas BAUŠYS (Vilniaus Gedimino technikos
prof. habil. dr. Feliksas IVANAUSKAS (Vilniaus universitetas, fiziniai
doc. dr. Regina KULVIETIENĖ (Vilniaus Gedimino technikos
prof. habil. dr. Rimvydas SIMUTIS (Kauno technologijos universitetas,
prof. habil. dr. Antanas ŽILINSKAS (Matematikos ir informatikos
prof. habil. dr. Rimantas ŠEINAUSKAS (Kauno technologijos
doc. dr. Antanas Leonas LIPEIKA (Matematikos ir informatikos
Disertacija bus ginama viešame Info rmatikos inžinerijos mokslo krypties
tarybos posėdyje 2008 m. sausio mė n. 17 d. 11 val. Matematikos ir
Disertaciją galima peržiūrėti Vilnia us Gedimino technikos universitet
(Saulėtekio al. 14, LT-10223 Vilnius, Liet uva) ir Matematikos ir informatikos

© Viktor Medvedev, 2007
VGTU leidyklos „Technika“ 1439 mokslo literatūros knyga.
Vilnius, Lietuva) bibliotekose. instituto (Akademijos g. 4, LT-08663
o
a 2007 m. gruodžio 17 d. Disertacijos santrauka išsiuntinėt
el. paštas doktor@adm.vgtu.lt
4956; faksas (8 5) 270 0112; Tel.: (8 5) 274 4952, (8 5) 274
Adresas: Goštauto g. 12, LT-01108 Vilnius, Lietuva.
informatikos instituto konferencijų ir seminarų centre.
institutas, technologijos mokslai, informatikos inžinerija – 07T).
i, informatikos inžinerija – 07T), universitetas, technologijos moksla
Oponentai:
institutas, technologijos mokslai, informatikos inžinerija – 07T).
technologijos mokslai, informatikos inžinerija – 07T),
i, informatikos inžinerija – 07T), universitetas, technologijos moksla
mokslai, informatika – 09P),
Nariai:
i, informatikos inžinerija – 07T). universitetas, technologijos moksla
Pirmininkas:
inžinerijos mokslo krypties taryboje:
institutas, technologijos mokslai, informatikos inžinerija – 07T).
Mokslinis vadovas
Disertacija rengta 2003–2007 metais Matematikos ir informatikos institute. Topicality of the problem.
apprehension is rather a complicated prob lem especially if the data refer to a
complex object or phenomenon described by many parameters. A tendency has
been recently observed that scientists, who pursue investigations of MDS
even ignore them. On the other hand, in other investigations of visualization

neural networks, thus strengthening th e relationship among different trends of

proposed. That allows a feed-forward neural network to realise Sammon’s
Minimization of the projection error of multidimensional data by using
Aim and tasks of the work. The key aim of the work is to develop and
improve methods how to efficiently minimize visualization errors of
multidimensional data by using artificial neural networks. It was necessary to
solve these tasks: 1) to analyse the methods of multidimensional data
visualization; 2) to investigate the ab ilities of artificial neural networks to
visualize multidimensional data; 3) to create parallel realizations of the
SAMANN algorithm; 4) to improve and speed-up the training and retraining
process of the SAMANN algorithm; 5) to search for the optimal values of the
algorithm learning rate; 6) to investigat e the abilities of the artificial neural
Research object. The research object of the d issertation are artificial
neural networks for multidimensional dat a projection. General topics related
with this object are: 1) multidimensional data visualization; 2) dimensionality
reduction algorithms; 3) rs of projecting data; 4) pr ojection of the new data;
5) strategies for retraining the neural ne twork that visualizes multidimensional
data; 6) optimization of control par ameters of the neural network f r
Scientific novelty. A parallel realization of the SAMANN algorithm for
multidimensional data projection has been created. The strategies for retraining
5

n; 7) parallel computing. multidimensional data projectio
o
erro
networks in projecting new data.
addressed in this dissertation. problem artificial neural networks is the main
projection.
ic learning rule (SAMANN) has been visualizing multidimensional data. A specif
artificial neural network algorithms for visual data analysis. The work deals with
of MDS-type methods by applying artificial work, we try to extend the realizations
ections with MDS-type methods. In this methods there are no comparisons or conn
ociate from other methods of research or (multidimensional scaling), frequently diss
proving apprehension of the data. Data multidimensional data and the ways of im
rk is the analysis of The research area of this wo
General Characteristic of the Dissertation the neural network have b een proposed. It has been established experimentally
how to select the learning parameter va lue of the SAMANN neural network so
The research is based on the development of new strategies
Practical value. The results of the research ar e applied in solving so me
problems in practice. Human physiol ogical data that describe the human
functional state have been investigat ed. The results, obtained by the method,
can be of use to medics for a prelim inary diagnosis: healthy, unclear, or sick
The base of research of psychological data is the project “Information
Approbation and publications of the research. The main results of this
dissertation were published in 11 scientific papers: 2 articles in periodical
scientific publications from the ISI W eb of Science list; 2 articles in periodical
scientific publications from the ISI Proceedings list; 1 article in the bo ok
published by Springer; 1 chapter of the book published by IOS Press; 3 articles
in periodical scientific publications from the list approved by the Scien ce
Council of Lithuania; 2 articles in the proceedings of scientific conferences.
The main results of the work have been presented and discussed at 4
The scope of the scientific work The work is written in Lithuanian. It
consists of 9 chapters, and the list of refe rences. There are 144 pages of the
1.
The relevance of the problem, the sci entific novelty of the results and their
practical significance are described as we ll as the objectives and tasks of t e
2.

or three dimensions to represent, can be difficult to interpret. Direct
6
.
g the data that rwto htan mroe qeriu visualization. Multidimensional data, meanin
d analysis of the various methods of The chapter is devoted to the review an
Analysis of

Voir icon more
Alternate Text