Regularity of large solutions for the compressible magnetohydrodynamic equations

icon

17

pages

icon

English

icon

Documents

2011

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

17

pages

icon

English

icon

Documents

2011

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

In this paper, we consider the initial-boundary value problem of one-dimensional compressible magnetohydrodynamics flows. The existence and continuous dependence of global solutions in H 1 have been established in Chen and Wang (Z Angew Math Phys 54, 608-632, 2003). We will obtain the regularity of global solutions under certain assumptions on the initial data by deriving some new a priori estimates.
Voir icon arrow

Publié par

Publié le

01 janvier 2011

Langue

English

Liu et al . Boundary Value Problems 2011, 2011 :30 http://www.boundaryvalueproblems.com/content/2011/1/30 R E S E A R C H Open Access Regularity of large solutions for the compressible magnetohydrodynamic equations 1* ng Qin 2 and Xiaozhen Peng 3 Xin Liu , Yumi * Correspondence: xinliu120@126. Abstract com 1 College of Information Sciences In this paper, we cons ar v and Technology, Donghua compressiblemagnetoidheyrdrtohdeyinnaitimail-cbsofluonwds.yThealeuxeistperoncbleeamndofcoonntei-nduiomuesnsional University, Songjiang Shanghai, 201620, People s Republic of China dependence of global solutions in H 1 have been established in Chen and Wang (Z Full list of author information is Ange h P s 54, 608-632, 2003). We will obtain th available at the end of the article solutiownsMautnderhycertainassumptionsontheinitialdatabeyredgeurilvairnitgysoofmgleobnaelwapriori estimates. Keywords: magnetohydrodynamics (MHD), global solutions, regularity, initial-bound-ary value problem 1 Introduction Magnetohydrodynamics (MHD) is concerned with the flow of electrically conducting fluids in the presence of magnetic fields, either externally applied or generated within the fluid by inductive action. The application of magnetohydrodynamics covers a very wide range of physical areas from liquid metals to cosmic plasmas, for example, the intensely heated and ionized fluids in an electromagnetic field in astrophysics, geophy-sics, high-speed aerodynamics, and plasma physics. There is a complex interaction between the magnetic and fluid dynamic p henomena, and both hydrodynamic and electrodynamic effects have to be considered. For convenience, we consider the follow-ing plane magnetohydrodynamic equations in the Lagrangian coordinate system: v t u y = 0, (1 : 1) u t + ( p +21 | b | 2 ) y = λ u y y , (1 : 2) v w t b y = μ v w y y , (1 : 3) ( ν v b y y (1 : 4) v b ) t w y = , E t + u ( p +12 | b | 2 ) w · b y = λ uu y + μ w · w y v + ν b · b y + κθ y y . (1 : 5) © 2011 Liu et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Voir icon more
Alternate Text