Regression and degradation models in reliability theory and survival analysis ; Regresiniai ir degradaciniai modeliai patikimumo teorijoje ir išgyvenamumo analizėje

icon

97

pages

icon

Documents

2010

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

97

pages

icon

Documents

2010

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

VILNIUS UNIVERSITYInga Masiulaityte˙REGRESSION AND DEGRADATION MODELS IN RELIABILITYTHEORY AND SURVIVAL ANALYSISDoctoral dissertationPhysical sciences, mathematics (01P)Vilnius, 2010The scientific work was carried out in 2005–2009 at Vilnius University.Scientific supervisor:Prof. Dr. Vilijandas Bagdonaviˇcius (Vilnius University, Physical sciences, Mathe-matics - 01P)NotationF(t) Cumulative distribution function;f(t) Probability density function;S(t) Survival function;n Sample size;T Failure timeix Explanatory variable;λ(t) Hazard rate function;Λ(t) Cumulative hazard rate functionT ,...,T Failuretimesofn unitstestedin”hot”11 1n 11conditions;T ,...,T Failure times of n units tested in21 2n 22”warm” conditions;μ Mean failure time;2σ Variance;r Scale parameter;H Hypothesis;0α,β,ν,μ Parameters;K (t) Cumulative distribution function of re-jdundant system;k (t) Probability density function of redun-jdant system;(K (t),K (t)) Confidence interval;jjI Fisher information matrix;−1I Inverse of the Fisher information ma-trix;L(r,θ) Likelihood function;l(r,θ) Loglikelihood function;Z(t) Degradation process;z Critical level;0(0)T Moment of the non-traumatic failure;(k)Tt of the traumatic failure of thekth mode;(0)S Survival function of the non-traumaticfailure;3(k)S Survival function of the traumatic fail-ure of the kth mode;(k)˜λ (t|Z) Conditional failure rate;P Probability;C Censoring time of the ith unit .
Voir icon arrow

Publié par

Publié le

01 janvier 2010

Nombre de lectures

53

Poids de l'ouvrage

1 Mo

UNIVERSITYVILNIUS

IngaMasiulaityte˙

REGRESSIONTHEANODRDYEGRANDADSUARVTIONIVALMODEANALLSYSISINRELIABILITY

PhysicalDoscctoiences,ralmadissertatithematicson

0012Vilnius,

)P(01

The

tificscien

orkw

was

Scientificsupervisor:

sVilijandaDr.Prof.

icsmat

-

1P)0

diecarr

out

in

Bagdonaviˇcius

09–200520

(Vilnius

at

Vilnius

University,

.yersitUniv

Phlicasy

iences,sc

-heMat

ontitaNo

fF((tt))
)t(SnTix)t(λ)tΛ(T11,...,T1n1
T21,...,T2n2
µ2σrH0α,β,ν,µ
)t(Kj)t(kj(Kj(t),Kj(t))
I1−IL(r,θ)
lZ((rt,)θ)
z0(0)T)k(T)(0S

Cumulativedistributionfunction;
Probabilitydensityfunction;
Survivalfunction;
FSampleailuresiztimee;
HazaExplanardtorrateyvafunctriable;ion;
FCumailureulativtimesehaofzna1rdunitsratetestedfunctionin”hot”
ns;conditioFailuretimesofn2unitstestedin
ions;conditrm”a”wVMeanariafncae;iluretime;
HypScaleotheparasis;meter;
CParumulativameters;edistributionfunctionofre-
ystem;stdundanProbabilitydensityfunctionofredun-
system;tdanCoFishernfidencinfoeinrmattervional;matrix;
InverseoftheFisherinformationma-
;trixLoLikglikelihoelihoododffunctiounction;n;
Degradationprocess;
el;levCriticalMomentofthenon-traumaticfailure;
kthMomenmotde;ofthetraumaticfailureofthe
Survivalfunctionofthenon-traumatic
failure;

3

()kS

)k(˜λPCi

(t|Z)

Survivalfunctionofthetraumatic
ureofthekthmode;

ProbaConditbilitionay;lfailurerate;
Censoringtimeoftheith

of

4

the

ith

unit

.

fail-

Contents

1Acceleratedlifemodels
1.1Introduction................................
1.2GeneralizedSedyakin’smodel......................
1.2.1Definitionofthemodel......................
1.2.2GSmodelforstep-stresses....................
1.3Acceleratedfailuretimemodel......................
1.3.1Definitionofthemodelforconstantstresses..........
1.3.2Definitionofthemodelfortime-varyingstresses........
1.3.3Relationsbetweenthemeansandthequantiles........
1.4Proportionalhazardsmodel.......................
1.4.1Definitionofthemodelforconstantstresses..........
1.4.2Definitionofthemodelfortime-varyingstresses.......
1.5Wienerprocess..............................
1.6Wienerprocesswithdrift.........................
1.7Gammaprocess..............................
2Statisticalanalysisofredundantsystems
2.1Redundantsystemwithonemainandonestand-byunit.......
2.1.1Themodels............................
∗2.1.2Goodness-of-fittestforthehypothesisH...........
02.1.3Goodness-of-fittestforthehypothesisH...........
02.1.4Simulations:powerofthetests.................
2.2Redundantsystemwithonemainand(m−1)stand-byunits....
2.2.1Nonparametricestimation....................
2.2.2Parametricestimation......................
ˆ2.3AsymptoticdistributionofKandconfidenceintervalsforK(t)..
jj2.3.1Nonparametriccase........................
2.3.2Parametriccase..........................
3Failure-TimeDegradationModels
3.1FailureDegradationModelwithcovariates...............
3.2Estimationofmodelparameters.....................
3.2.1Thedata..............................
3.2.2Likelihoodfunctionconstruction.................
3.2.3Example1:Timescaledgammaprocess............

5

411418181820202122232324242425622627293437434448484860677680808182

A

tInroduciotn3.2.4Example2:Shockprocesses..
3.23.2.5.6EMxodifieampled3:loPglikathelihomooddels.........
3.3Estimationofreliabilitycharacteristics

dmethoaDelt

Bibliography

6

....

....

....

....

....

....

....

....

....

....

....

....

....

4............

79

....

84878889

29

Introduction

Towarranthighreliabilityofkeycomponentsofreliabilitysystems,stand-byunits
areused.Ifanycomponentfailsthenastand-byunitoperatesinsteadofthefailed
t.nneocompIfthestand-byunitsarefunctioninginthesame”hot”conditionsasthemain
Butunit”hotthen”usuallyredundancyafterswhasitchingdisadvtheantagesreliabilitbyecauseoftheanyofstand-bstandy-bunitsydounitsesnotfailscehaange.rlier
thanthemainonewiththeprobability0.5.
Ifthestand-byunitsarenotoperatinguntilthefailureofthemainunit(”cold”
reserving),itispossiblethatduringandaftercommutingthefailurerateincreases
becused:ausestathend-stbyand-bunitsyfunitunctioisnnot”wunderalormed”werenostressugh.thaSon”wthearm”mainoreservingne.Inissuchasometimescase
theunitandprobaitbilitisyalsoofptheossiblefailurethaofttheswitcstahingnd-bisyfluenunitt,isi.e.smallerswitcthahingnthatfromof”wthearm”mainto
”hot”conditionsdoesnotdoanydamagetounits.
Thedefinitionof”fluentswitching”asstatisticalhypothesisontheconditional
survivdistributialonregreoftssionhefamoiluredelsstimeuchofastheSedysystemakin’saafterndathecswceleraitchtedisgivfailuren.eWtimeellkno(AFT)wn
d.usearedelmoposed.GooAsdness-yomptotf-fiticteprostspfoertriesobtofainedproposedredundantesttstasystemstisticsareinreliabilitvestyigamoted.delsarepro-
Parametricandnon-parametricestimationproceduresforthereliabilityofsuch
systemsFailuresareofgivhigen.hlyPropreliableertiesounitfstheareprorapore.sedOneparwayameterofesobtatimatoiningrsaacreoomplemenbtained.tary
expreliabierimenlitytalinformfactoratios,nishencetodotoobtaacceleratinefailurdelifesquictestingkly.(ALAnotT),heri.e.watyoofuseobtahigherininglevelcom-of
plementaryreliabilityinformationistomeasuresomeparameterswhichcharacterize
theagingordegradationoftheproductintime.
StatisticalinferencefromALTispossibleiffailuretimeregressionmodelsrelating
failureinfluencingtimethedistributioreliabilitnyarwithewellexternaclhosen.explaStatnatoistryicavlainferiablesrence(covfromariates,failursterestimeses)-
timedegradisdattionributiondatanotwithcoonlyvariatwithesexneeternaldsevenbutamolsorewithcomplicatinternedalmoexpladelsnatorelarytingvariablesfailure
case(degrmoadadelstion,forweardegra)whicdatiohnexproplaincessthedistributiostateofnaunitresbeneeded,forettheoo.failures.Inthelast
Hence,theseconddirectionoftheworkismodellingandstatisticalestimationof

7

thereliabilityofsystemsorunitsinthecasewhenjointfailuretimeanddegradation
regressiondataareavailable.
Themodifiedmaximumlikelihoodmethodforestimationoffailureprocessand
degradationprocessparametersusingsimultaneousdegradationandmulti-modefail-
uretimeregressiondataisintroduced.
Estimatorsofvariousreliabilitycharacteristicsoftheunitsrelatedtotraumatic
andnon-traumaticfailuresaregiven.
Exampleswhenthedegradationprocessismodelledbytimescaledgammapro-
cess,pathprocesses,shockprocesseswiththenumberofshocksmodelledbynon-
homogenousPoissonprocessareconsidered.

yitualActTherearemanypublicationsonprobabilisticmodellingofredundantsystemsrelia-
bilitygiventhereliabilityofthesystemcomponents.Applyingoftheseresultsinreal
analysisofsystemreliabilityispossibleiftheprobabilitydistributionofthecompo-
nenreliabitsislityknoandwn.theSoapropveryertiesactuaoflthpreoblemestimatoisrstheeusingstimatioestimanotorsfthethereliaredundanbilittyofsystemthe
ts.nneocompMethodsofacceleratedlifetestinganddegradationprocessanalysisseparately
arewelldevelopedbutjointmodellingandstatisticalanalysisofsimultaneousfailure
time-degradationdatawithcovariatesisveryrecentresearchdirection.Thelast
internationalconferences”Mathematicalmethodsinreliability”(2005,2007,2009)
showincreasinginterestinthisdirection.

blemsproandmsAiThemainproblemsarethefollowing:
1.toformulatemathematicaldefinitionofstand-byunitfluentswitchingfrom
”warm”to”hot”conditions;
2.toconstructtestsforgeneral”fluentswitchinghypothesis”formulatedusing
Sedyakin’s”reliabilityprinciple”andforparticularfluentswitchinghypothesisfor-
mulatedusingacceleratedfailuretimemodel;
3.toinvestigateasymptoticpropertiesoftheteststatistics;
4.toconstructparametricandnonparametricestimatorsofthecumulativedistribu-
tionfunctionofredundantsystemusingreliabilitydataofcomponentstestedunder
es;stresstdifferen5.toinvestigateasymptoticpropertiesoftheparametricandnonparametricestima-
rs;to6.toconstructasymptoticconfidentialintervalsforcumulativedistributionfunction
system;tredundanof7.toinvestigatefinitesamplepropertiesoftheparametricandnonparametricesti-
matorsbysimulation;

8

8.toformulategeneralsimultaneousfailuretimeanddegradationregressiondata
dels;mo9.dattoionmoprodifycessmapaximrametumelikrselihousingodsimmethoultadfoneousrestimatdegraiondatiooffnaandiluremproculti-moessanddedegfailurera-
10time.toinvregressionestigatedatathestusingructurepredictoofmorsofdifieddegrlikadatelihoionodprofunctioncesses;whenthedegradation
prowithcesstheisnmoumbdeelrleodfbshoyckstimemoscaleddelledgambymanon-prohomogcess,enopausthPprooissocessnes,proscehocss.kprocesses

dsMethoCountingprocesstechniques,deltamethod,parametricandnon-parametricestima-
tionmethods,limittheoremsforthesequencesofrandomvariablesandstochastic
processes,numericandsimulationmethodswereused.

Novelty
Allresultsofthethesisarenew.

Statementspresentedforthedefence
1.Mathematicaldefinitionofstand-byunitfluentswitchingfrom”warm”to”hot”
conditionsisformulated.
2.Goodness-of-fittestforageneral”fluentswitchinghypothesis”basedonSedyakin’s
constructed.isprinciple3.Goodness-of-fittestfora”fluentswitchinghypothesis”basedonacceleratedfail-
uretimemodelisconstructed.
4.Asymptoticpropertiesofthetwoteststatisticsareinvestigated;
5.Parametricandnonparametricestimatorsofthecumulative

Voir icon more
Alternate Text