Process development for the manufacturing of flat knitted innovative 3D spacer fabrics for high performance composite applications [Elektronische Ressource] / Md. Abounaim

icon

198

pages

icon

English

icon

Documents

2010

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

198

pages

icon

English

icon

Documents

2010

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

Process development for the manufacturing of at knittedinnovative 3D spacer fabrics for high performance compositeapplicationsVon der Fakult at MaschinenwesenderTechnischen Universit at DresdenzurErlangung des akademischen GradesDoktoringenieur (Dr.-Ing.)angenommene DissertationM. Sc. Md. Abounaimgeb. am 04.06.1978 in Pirojpur, BangladeshTag der Einreichung: 05.11.2010Tag der Verteidigung: 01.02.2011Gutachter: Prof. Dr.-Ing. habil. Dipl.-Wirt. Ing. Chokri CherifProf. Dr.-Ing. Burkhard WulfhorstProf. Dr.-Ing. Jens-Peter MajschakVorsitzender der PromotionskommissionAcknowledgmentsI would rst and foremost like to thank my supervisor Prof. Dr.-Ing. habil. Dipl.-Wirt.Ing. Chokri Cherif for his support and invaluable guidance during this research. I amvery grateful for his steady encouragement and readiness to help. His vision, ideas andcomments on various issues have contributed to the quality of this dissertation.It is an honour for me to thank Prof. Dr.-Ing. Burkhard Wulfhorst, for his acceptanceto referee this dissertation.I must also acknowledge Dr.-Ing. Olaf Diestel for his great support as the group leaderand Dr.-Ing. Gerald Ho mann for his invaluable advice as the project head. I would liketo thank my research group fellows for their support. I also like to pay my gratitudeto all the employees of Institute of Textile Machinery and High Performance MaterialTechnology, who have made available their support in a number of ways.
Voir icon arrow

Publié le

01 janvier 2010

Langue

English

Poids de l'ouvrage

10 Mo

M. Sc. Md. Abounaim
angenommene Dissertation
Von der Fakultät Maschinenwesen
Prof. Dr.Ing. Burkhard Wulfhorst
Erlangung des akademischen Grades
geb. am 04.06.1978 in Pirojpur, Bangladesh
Gutachter:
Prof. Dr.Ing. habil. Dipl.Wirt. Ing. Chokri Cherif
Tag der Verteidigung: 01.02.2011
Technischen Universität Dresden
zur
Doktoringenieur (Dr.Ing.)
der
Tag der Einreichung: 05.11.2010
Vorsitzender der Promotionskommission
Prof. Dr.Ing. JensPeter Majschak
Process development for the manufacturing of flat knitted innovative 3D spacer fabrics for high performance composite applications
Acknowledgments
I would first and foremost like to thank my supervisor Prof. Dr.Ing. habil. Dipl.Wirt. Ing. Chokri Cherif for his support and invaluable guidance during this research. I am very grateful for his steady encouragement and readiness to help. His vision, ideas and comments on various issues have contributed to the quality of this dissertation.
It is an honour for me to thank Prof. Dr.Ing. Burkhard Wulfhorst, for his acceptance to referee this dissertation.
I must also acknowledge Dr.Ing. Olaf Diestel for his great support as the group leader and Dr.Ing. Gerald Hoffmann for his invaluable advice as the project head. I would like to thank my research group fellows for their support. I also like to pay my gratitude to all the employees of Institute of Textile Machinery and High Performance Material Technology, who have made available their support in a number of ways. Especially, Mr. Mirko Krziwon for helping to carry out the experimental part of this research work.
This Dissertation was carried out under the Collaborative Research Project “SFB 639, TPA3” financed by the German Research Foundation (DFG). I am very much grateful for this financial support. I also show gratitude to German Academic Exchange Service (DAAD) for the financial support during my master’s study from 20042006 and fulfilling my dream to study in Germany.
I am thankful to the Bangladeshi community and friends living in Dresden and especially to Mr. Mir Mohammad Badrul Hasan and Mr. Mohammad Abu Shayed for their support and encouragement.
I really wish to express my heartfelt thanks to my late father Md. Balayet Hossain Sardar, my mother Mrs. Nasima Begum and my late eldest brother Zahidur Rahman for their guidance, encouragement and moral support throughout my life.
Last but not least, special thanks to my beloved wife Sahanaz Parvin. I express my deepest gratitude for her much patience and tolerance during the preparation of the thesis. Without her constant support and encouragement, the completion of this thesis would not have been possible.
Dresden, 05.11.2010
Md. Abounaim
Contents
SymbolsandAbbreviations
1
2
3
Introduction
Flat knitting technology
2.1
2.2
Basic principles and structures of flat knitting . . . . . . . . . . . . . . .
Automatic power flat knitting machine and its modern features . . . . .
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
CAD system and modern programming installation . . . . . . . .
Electronic controls . . . . . . . . . . . . . . . . . . . . . . . . . .
Individual needle selection capability . . . . . . . . . . . . . . . .
Fullyfashioning or shapeknitting . . . . . . . . . . . . . . . . . .
Seamless knitting (knit and wear) . . . . . . . . . . . . . . . . . .
Stitch pressingdown devices . . . . . . . . . . . . . . . . . . . . .
Multigauge technique
. . . . . . . . . . . . . . . . . . . . . . . .
Advanced takedown system . . . . . . . . . . . . . . . . . . . . .
Needle bed racking . . . . . . . .
. . . . . . . . . . . . . . . . . .
State of the Art of 3D Spacer Fabric for Composite
3.1
Textile reinforced composites . . . . . . . . . . . . . . . . . . . . . . . . .
vi
1
9
9
13
14
14
14
15
15
15
16
16
16
19
19
ii
Current research on the development of weft knitted spacer fabrics . . . . . . . . . . . . . . . . . . . . . . . .
40
36
. . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
30
32
. . . . . . . . . . . . . . . . . . . . .
25
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .
25
. . . . . . . . . . . . . .
37
Aramid fiber (AF)
21
Table of Contents
41
. . . . . . . . .
22
41
43
34
Weft knitted spacer fabrics . . . . . . . . . . . . . . . . . . . . . .
36
27
23
27
. . . . . . . . . . . . . . . . . . . . .
Manufacturing of textile composites . . . . . . . . . . . . . . . . .
. . . . . . . .
26
25
. . . . . . . . . . . . . . . . . . . .
21
. . . . . . . . . . .
28
34
. . . . . . . . . . . . . . . . . . . . . . . .
3.2.1.3
3.2.1.2
Carbon fiber (CF)
Thermoplastic matrix materials
Manufacturing of hybrid yarn
Glass fiber (GF)
High performance fibers
Hybrid yarn for textile reinforced thermoplastic composite
3.2.1.1
Braided spacer fabrics
Woven spacer fabrics . .
3.2.3
Warp knitted spacer fabrics
Stitched spacer fabrics
3.3.5
3.4.1
3.4
3.4.2
3.3.6
3.3.3
3.3
3.3.2
3.3.1
3.2.1
3.3.4
3.1.1.1
3.2.2
Spacer fabrics . . . . . . . . . .
3.1.1.2
Panelstructures in lightweight application
. . . . . . . . . . . . . . . . . . . . . . .
31
Thermoset composite manufacturing
3.1.1
Thermoplastic composite manufacturing
Advantages of thermoplastic composites
Application of conventional spacer fabrics
panelstructures
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
3.3.5.1
3.3.5.2
Spacer fabrics by circular and flat knitting . . . . . . . .
Strength characteristics of aluminium honeycomb sandwich panels
Conventional
3.2
3.1.2
61
Required technical features . . . . . . . . . . . . . . . . . . . . . .
65
64
45
iii
5.1
Ultimate compressive strength of alumunium honeycomb panels . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Carriage . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . .
51
67
68
. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
4
Potential panelstructures on the basis of textile composites using innovative 3D spacer fabrics . . . . . . . . . . . . . . . . . . . . .
Comparison of textile technologies for the manufacturing of 3D textile preforms for panelstructures . . . . . . . . . . . . . . . . .
Disadvantages of conventional panelstructures . . . . . . . . . . .
50
. . . . . . . . . . . . . . . . . . . . . . . . .
5.1.3
Needle bed
55
61
57
Table of Contents
Selection of flat knitting machines . . . . . . . . . . . . . . . . . . . . . .
74
73
. . . . . . . . . . . . .
71
71
Flat knitting machine: Steiger Aries.3 . . . . . . . . . . . . . . . .
69
68
66
Carriage . . . . . . . . . . . . . . . . . . . . . . . . . . .
Technologycomparison of flat knitting machines . . . . . . . . . .
Needle bed
Yarn feeder
5.1.4.1
5.1.4.2
5.1.4.3
Flexural behaviours of alumunium honeycomb panels . .
48
3.4.2.1
3.4.2.2
3.4.5
3.4.4
3.4.3
Objective of the Research
Flat knitting machine: Stoll CMS 320TC . . . . . . . . . . . . . .
CADpatterning software: SIRIX & M1plus
61
5
5.1.2
5.1.1
Knitting zone and knitting elements
. . . . . . . . . . .
62
Development of flat knitting technology for 3D spacer fabrics
5.1.4
5.1.3.2
5.1.3.1
5.1.3.6
Takedown system
5.1.3.3
5.1.3.4
5.1.3.5
CADpatterning software: Model
5.3
109
88
Concepts for the integration of reinforcement yarns into knit struc tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
117
114
Development and manufacturing of 3D spacer fabrics without any reinforcements . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .
Development and manufacturing of 3D spacer fabrics with 4 rein forcement layers . . . . . . . . . . . . . . . . . . . . . . . . . . . .
103
Thermoplastic consolidation of 3D spacer fabrics into composites .
111
91
85
3D spacer fabric with 4 reinforcement layers . . . . . . .
Integration of “sensornetwork” (functional yarn) for structural health monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . .
105
5.3.7.2
5.3.7.1
5.3.8
5.3.9
Analysis of mechanical properties of spacer fabrics
101
. . .
5.3.4
Development and manufacturing of various 3D tubular structures
5.3.5
Development and manufacturing of 3D spacer fabrics with course directional reinforcements . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . .
5.3.2
5.3.3
Materials
5.3.1
5.2
iv
5.1.4.6
5.1.4.5
5.3.6
Multilayer reinforced curvilinear 3D spacer fabrics
5.1.4.4
5.3.7
5.3.6.1
5.3.6.2
Development and manufacturing of multilayered 3D spacer fabrics
Yarn feeder
Curvilinear 3D spacer fabrics with 4 reinforcement layers
Knitting zone and knitting elements
. . . . . . . . . . .
76
78
Structural variation of 3D spacer fabrics
Takedown system
. . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
Development and manufacturing of 3D spacer fabrics
75
6
74
77
96
98
Multilayered 3D spacer fabric . . . . . . . . . . . . . . .
79
78
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table of Contents
. . . . . . . . . . . . . .
. . . . . . . . . . . . .
123
124
125
Measuring the mechanical properties of 2D knit composites . . . .
7.1
7.2
7.3
. . .
147
Calculation and comparison of tensile strengths of commingled hybrid yarns134
139
128
. . . . . . . . . . . . . .
121
Tensile properties of reinforcement yarns and 2D knit fabrics . . .
Table of Contents
6.1
169
Effect of dissimilar integration of reinforcement yarns on the mechanical properties of 2D knit composites . . . . . . . . . . . . . . . . . . . . . . .
List of Tables
9
118
v
Calculation and comparison of tensile properties of knit composites
Advantages and potential spacer fabrics
8
List of Figures
Bibliography
SummaryandOutlook
6.2.3
7
6.2.4
Flexural properties of 2D knit composites
Tensile testing of reinforcement yarns and 2D knit fabrics . . . . .
6.1.2
6.1.1
6.2.2
6.2
6.2.1
Mathematical analysis of tensile properties
Effect of different integration techniques of reinforcement yarns on the tensile properties of GFPP hybrid yarns and 2D knit fabrics . . . . . . .
Calculation and comparison of tensile strength of multilayer reinforced 2D knitted fabric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
157
163
171
applications of flat knitted innovative 3D 153
Tensile properties of 2D knit composites
Impact properties of 2D knit composites
133
127
118
SymbolsandAbbreviations
Symbol
IPCC
G8 C CO2 UD EU FRP GF PP 2D 3D CAD $U S RTM VI SRIM Pa.s. Tm Tc
Designation
The Intergovernmental Panel on Climate Change The Group of Eight Degree Celsius Carbon Dioxide Unidirectional The European Union Fiber Reinforced Plastic Glass Fiber Polypropylene Two Dimensional Three Dimensional Computer Aided Design The United States Dollar Resin Transfer Moulding Vacuum Infusion Structural Reaction Injection Moulding PascalSecond Melt Temperature Crystallisation Temperature
List of Symbols and Abbreviations
Symbol
Tg CF PAN AF MPa GPa µm PEEK PET PPS APS tf hc h If b A m mf mc ρca d
tc ρc teq Ef
Designation
vii
Glass Transation Temperature Carbon Fiber Polyacrylonitrile Aramid Fiber Mega Pascal Giga Pascal Micro Metre Polyether Ether Ketone Polyethylene Terephthalate Polyphenylene Sulfide Active Protection System Thickness of Facing Core Height Sandwich Panel Height Moment of Inertia Breadth of Sandwich Panel Vertical Area of the Unit Honeycomb Core Mass of the Honeycomb Sandwich Panel Mass of Facing Material Mass of Core Material Average Density of Honeycomb Core Breadth of Single Edge of Honeycomb Core Cell Wall Thickness of Honeycomb Core Cell Density of Honeycomb Core Material Equivalent Thickness Elastic Modulus of Facing Material
Voir icon more
Alternate Text