146
pages
English
Documents
2011
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
146
pages
English
Documents
2011
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
Publié par
Publié le
01 janvier 2011
Nombre de lectures
33
Langue
English
Poids de l'ouvrage
20 Mo
Publié par
Publié le
01 janvier 2011
Langue
English
Poids de l'ouvrage
20 Mo
Fakultät Forst-, Geo- und Hydrowissenschaften
Potential of Spaceborne X & L-Band SAR-Data for Soil
Moisture Mapping Using GIS and its Application to
Hydrological Modelling: the Example of Gottleuba
Catchment, Saxony / Germany
Dissertation zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)
vorgelegt von
M.Sc. Samy Gamal Khedr Elbialy
Gutachter:
Herr Prof. Dr.phil.habil. Manfred F. Buchroithner
Technische Universität Dresden
Herr Prof. Dr.-Ing. Uwe Sörgel
Leibniz-Universität Hannover
Dresden, den 08. März 2011
Erklärung des Promovenden
Die Übereinstimmung dieses Exemplars mit dem Original der Dissertation zum Thema:
“Potential of Spaceborne X & L-Band SAR-Data for Soil Moisture Mapping
Using GIS and ist Application to Hydrological Modelling: the Example of
Gottleuba Catchment, Saxony / Germany ”
wird hiermit bestätigt.
…………………………… …………. ….
Ort, Datum
…………………………… …………. ….
Unterschrift (Vorname Name)
2
Anything is possible if you wish hard enough
(James Matthew Barrie)
Declaration
I hereby certify that the PhD thesis entitled
Potential of Spaceborne X & L- Band SAR-Data for Soil Moisture Mapping
Using GIS and its Application to Hydrological Modelling: the Example of
Gottleuba Catchment, Saxony / Germany
is a bona fide record of research work carried out by me without any assistance
and that it has not been submitted in any previous application for a higher
degree.
Dresden, ………………….
….……………………..…………
Acknowledgements
This thesis was carried out in the Institute for Cartography, Dresden University of
Technology, Germany. In this context I would like to express special thanks to my
academic advisor Prof. Dr. Manfred Buchroithner who was a distinct supervisor
and gave numerous critical comments as well as various ideas for structuring the
present thesis. I also want to express my gratitude to the whole academic stuff of
the institute, especially Mrs. Sharma for her efforts to communicate the various
authorities to achieve this work.
My gratitude goes to the Staatsbetrieb Geobasisinformation und Vermessung
Sachsen (GeoSN) for supporting and providing the data used in this study. Thanks
to Mr. Hagen Linke from the Landestalsperrenverwaltung des Freistaates Sachsen
(LTV) for providing storage and hydrological data. Dr. Johannes Franke from
Institute of Hydrology and Meteorology, Dresden University of Technology, is
gratefully acknowledged for collection and provision of meteorological data.
I would like to express my deep thanks to Mrs. Antje Peter from the Sächsisches
Landesamt für Umwelt, Landwirtschaft und Geologie (LfULG) for supplying
precipitation and discharge data. Great thanks to Thomas Hahmann from the
Deutsches Luft- und Raumfahrtzentrum (DLR) for providing the required
TerraSAR-X data.
During the field work I used equipments which were borrowed from the Institute of
Hydrology and Meteorology, Dresden University of Technology. Thus I would like
to thank Mr. Heiko Prasse for his nice cooperation. Many thanks also go to the
Institute of Geography, Dresden University of Technology to permit me to use the
laboratory to measure the soil moisture for the collected field samples.
I also want to thank the Cultural Affairs & Mission Sector, Ministry of Higher
Education of Egypt, for awarding a PhD scholarship.
Last but not least, very special thanks go to my family and in particular to my wife
Amany and my two daughters Rawan, Noran and Myiar for the support, inspiration
and patience which I could always count on. Very special thanks go to my mother
and to my father’s spirit.
I
Abstract
Hydrological modelling is a powerful tool for hydrologists and engineers involved in
the planning and development of integrated approach for the management of water
resources. With the recent advent of computational power and the growing
availability of spatial data, RS and GIS technologies can augment to a great extent
the conventional methods used in rainfall runoff studies; it is possible to accurately
describe watershed characteristics in particularly when determining runoff
response to rainfall input. The main objective of this study is to apply the potential
of spaceborne SAR data for soil moisture retrieval in order to improve the spatial
input parameters required for hydrological modelling. For the spatial database
creation, high resolution 2 m aerial laser scanning Digital Terrain Model (DTM), soil
map, and landuse map were used. Rainfall records were transformed into a runoff
through hydrological parameterisation of the watershed and the river network using
HEC-HMS software for rainfall runoff simulation. The Soil Conservation Services
Curve Number (SCS-CN) and Soil Moisture Accounting (SMA) loss methods were
selected to calculate the infiltration losses. In microwave remote sensing, the study
of how the microwave interacts with the earth terrain has always been interesting in
interpreting the satellite SAR images. In this research soil moisture was derived
from two different types of Spaceborne SAR data; TerraSAR-X and ALOS
PALSAR (L band). The developed integrated hydrological model was applied to the
test site of the Gottleuba Catchment area which covers approximately 400 sqkm,
located south of Pirna (Saxony, Germany). To validate the model historical
precipitation data of the past ten years were performed. The validated model was
further optimized using the extracted soil moisture from SAR data. The simulation
results showed a reasonable match between the simulated and the observed
hydrographs. Quantitatively the study concluded that based on SAR data, the
model could be used as an expeditious tool of soil moisture mapping which
required for hydrological modelling.
II
Table of Contents
Acknowledgements ........................................................................................................ I
Abstract .......................................................................................................................... II
Table of Contents ........................................................................................................... III
List of Figures ................................................................................................................. VI
List of Tables .................................................................................................................. VIII
Acronyms and Abbreviations …...................................................................................... IX
Symbol / Parameter Definitions ...................................................................................... XI
1 Introduction .................................................................................................................. 1
1.2 Thesis Organisation ………………………………………...…………………... 3
2 Literature Review .......................................................................................................... 4
2.1 Microwave Remote Sensing and its Applications in Hydrology ................... 4
2.1.1 Principles of Microwave Remote Sensing ………………………..... 4
2.1.1.1 Radar Polarisation and Scattering Type …….………..…. 6
2.1.2 Interpretation of Radar Images ……......………………………...….. 7
2.1.2.1 Microwave Signal and Object Interactions …………....… 7
Influence of the Illuminated Surface ………………….. … 7
2.1.2.2 Scattering Patterns ………………………………….…..… 9
2.1.3 Geometrical Characteristics ………………………….............…..… 10
2.1.3.1 Slope Foreshortening …………….…..… 10
2.1.3.2 Aspect ………………………………..……….…..………… 11
2.1.3.3 Radar Shadow …………….…………….. 11
2.1.3.4 Layover ……………………………….….. 11
2.1.4 Spaceborne Radar Systems ……….……………...………… 12
2.1.4.1 Historical Account ………………………….........………… 12
2.1.4.2 TerraSAR-X ………………….......………… 14
2.1.4.3 ALOS ……………………...……….......………… 16
ALOS Characteristics ………………………........………... 16
ALOS PALSAR …………….......……….. 16
2.1.5 Remote Sensing in Hydrological Modelling ..………...................… 19
2.1.5.1 Precipitation ……………………………….....................… 19
2.1.5.2 Evapotranspiration ………………………………............... 20
2.1.5.3 Soil Moisture ……………………………................. 21
2.1.5.4 Surface Water…………..………………................. 22
2.1.5.5 Groundwater ……….………..…………................. 22
2.1.5.6 Infiltration ……..…………..……………….……................. 23
2.2 Integration of GIS with Hydrological Modelling …..…………………… 24
2.2.1 General ……………..…..…………..……………….…….................. 24
2.2.2 Limitations of GIS in Hydrological Modelling ……..……………...… 26
2.2.3 Spatial Hydrological Models ……..…………….………….… 27
2.2.3.1