241
pages
English
Documents
2010
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe et accède à tout notre catalogue !
Découvre YouScribe et accède à tout notre catalogue !
241
pages
English
Documents
2010
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Publié par
Publié le
01 janvier 2010
Nombre de lectures
43
Langue
English
Poids de l'ouvrage
3 Mo
Phlorotannins as UV-protective substances in
early developmental stages of brown algae
DISSERTATION
Zur Erlangung des Doktorgrades der Naturwissenschaften
(Dr. rer. nat.)
Fachbereich Biologe/Chemie
Universität Bremen
vorgelegt von
Franciska S. Steinhoff
April 2010
Gutachter: Prof. Dr. Kai Bischof
Prof. Dr. Christian Wiencke
Erkennen heißt nicht zerlegen, auch nicht erklären.
Es heißt Zugang zur Schau finden.
Aber um zu schauen, muss man erst teilnehmen.
Das ist eine harte Lehre.
Antoine de Saint-Exupéry
Contents
Contents
LIST OF ABBREVIATIONS…………………………………………………………... III
SUMMARY……………………………………………………………………………... V
ZUSAMMENFASSUNG…..…………………………………………………………… VIII
LIST OF PUBLICATIONS AND DECLARATION OF CONTRIBUTION…...….. XII
1 Introduction………………………………………………………………………….... 1
1.1. Seaweeds………… 1
1.1.1. Seaweed communities in the Arctic……………………………………….. 2
1.1.2. Developmental life-cycle of kelps………………………………………… 3
1.1.3. Ultrastructure of kelp zoospores…………………………………………... 4
1.2. Stratospheric ozone layer, greenhouse effect and variability of UV radiation……... 4
1.2.1. Stratospheric ozone layer, UV radiation and PAR……………………….... 5
1.2.2. Impact of UV radiation and high PAR irradiances on algae..…………….. 6
1.3. Climate change and enhanced temperatures in the Arctic……………………...…… 7
1.4. Protective, stress and storage compounds in zoospores……………..…………….... 8
1.4.1. Phlorotannins……………………………………………………………… 8
1.4.2. Reactive oxygen species…………………………………………….…….. 10
1.4.3. Fatty acids in kelps………………………………………………………… 10
1.5. Aims of the thesis…………………………………………….…………………..….. 11
2 Methodological considerations……………………………………………………… 12
2.1. The Kongsfjord, an Arctic Fjord System…………………………………………… 12
2.1.1. The physical environment of Kongsfjorden……………………………… 13
2.1.1.1. Water temperature………………………………………………
2.1.1.2. Underwater radiation regime…………………………………... 13
2.1.2. Study area and sample collection………………………………………... 14
2.2. Experimental design, set-up and investigated parameters……………………….… 14
2.2.1. Underwater simulations ……………………………………………….... 16
2.3. Exn in relation to statistics……………………………………….. 17
2.4. Radiation treatments and measurements……………………………………………
2.5. Germination as a fitness parameter………………………………………………… 18
2.6. Ultrastructructure of gametophytes and reactive oxygen species (ROS)………….. 19
2.7. Quantitative and qualitative analysis of fatty acids…………………………………
2.8. Phlorotannin extraction…………………………………………………………….. 20
2.9. Quantitative phlorotannin determination…… 21
3 Summary of Results………………………………………………………………….. 23
3.1. UV radiation at Ny-Ålesund and in Kongsfjorden…………………………………. 23
3.2. Effects of a changing environment on spores………………………………………. 24
3.2.1. Germination of various brown algal zoospores…………………………... Contents
3.2.2. Phlorotannin content in zoospores and their surrounding medium………. 25
3.2.2.1. Phlorotannin variability over time………………………………
3.2.2.2. Phlorotannin variability under UV radiation and in various
temperatures…………………………………………………..… 26
3.2.2.3. Phlorotannin content and vertical zonation pattern of algae…… 28
3.2.3 Fatty acid composition in kelp zoospores and juvenile gametophytes……. 29
3.2.3.1. Effects of time, UV radiation and low vs high PAR on fatty
acid content and composition……………………………………. 30
3.2.3.2. Coherence of fatty acids and phlorotannins…………………….. 31
3.2.4. Microscopical observations of UV radiation and temperature effects……. 32
4 Synoptic Discussion…………………………………………….…………………….. 34
4.1. Experimental radiation treatments and measurements……………………………… 34
4.2. Zoospores, a challenging developmental stage?......................................................... 35
4.3. The notional role of phlorotannins in brown macroalgae…………………………... 36
4.3.1. Phlorotannins, induction in relation to season and species?........................ 36
4.3.2. Phlorotannin expression in relation to habitat and age of the algae?.......... 37
4.3.3. Phlorotannin expression in relation to radiation tolerance and exposure
time, ROS and vertical zonation?................................................................ 39
4.3.4. Phlorotannins - protective substances for recruits?..................................... 41
4.4. Fatty acid composition, variable or reliable metabolic parameter?............................ 42
4.4.1. Fatty acid composition in relation to species……………………………... 43
4.4.2. Fatty acid lation to UV radiation or/and high PAR.…… 44
4.5. Short- and mid-term radiation and temperature effects on brown algal propagules.. 44
4.6. Conclusion………………………………………………………………………….. 47
4.7. Future perspectives…………………………………………………………………. 49
Acknowledgements…………………………………………………………………….. 51
References………………………………………………………………………………. 53
Original Publications…... 67
Publication I……………………………………………………………………………. 68
Publication II…………………………………………………………………………… 93
Publication III………………………………………………………………………….. 123
Publication IV 161
Publication V 195
Publication VI 197
Erklärung…………………………………………………………………………….… 223
Abbreviations III
List of Abbreviations
% Percent DNA Desoxyribonucleic acid
˜ Approximately DOC Dissolved organic matter
< Smaller than DU Dobson unit
> Greater than E East
° Degree e.g. Exampli gratia
(for example)
°C Degree Celsius
EM Electron microscopy
μ Micro
FA Fatty acid
μg Microgram
FC Folin-Ciocalteu
μm Micrometer
FD Folin-Denis
μmol Micromole
Feb February
Acetyl-CoA Acetyl-Co-enzyme
GC Gas chromatography
A
h Hours
Apr April
H O Hydrogen peroxide 2 2
Aug August
HPLC High performance liquid
C Carbon chromatography
IR Infrared
CIE Commission
Internationale de
Jan January l’Éclairage
CPD Cyclobutane Jul July
pyrimidine dimer
Jun June d Days
kDa Kilo Dalton Da Dalton
kg Kilogram Dec December IV Abbreviations
km Kilometer PAB Photosynthetically active
radiation (PAR)+UV-A
+UV-B (280-700 nm) L Lipid globules
PAR Photosynthetically active
LMight microscopy
radiation (400-700 nm)
m Meter
PS II Photosystem II
MAA Mycosporine-like
PSU Practical salinity unit amino acid
Mar March Publ Publication
mol Mole PUFA poly unsaturated fatty acids
mRNA Messenger ROS Reactive oxygen species
Ribonucleic acid
s Second MUFA Monosaturated fatty
acids
S South
N North
SAFA Saturated fatty acids
n Number of
replicates
SD Standard deviation
NBT Nitro-blue
tetrazolium Sep September
nm Nanometer
UV-A Ultraviolet radiation A
(320-400 nm)
Nov November
UV-B Ultraviolet radiation B
(280-320 nm) Oct October
UV-C Ultraviolet radiation C
OH Hydroxyl (220-280 nm)
UVR Ultraviolet radiation p Probability
(220-400 nm)
PA Photosynthetically W Watt [SI Unit]
active radiation
(PAR) + UV-A
WSC West Spitsbergen Current (320-700 nm)
λ Wavelength [nm]