193
pages
English
Documents
2010
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
193
pages
English
Documents
2010
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Publié par
Publié le
01 janvier 2010
Nombre de lectures
24
Langue
English
Poids de l'ouvrage
28 Mo
Publié par
Publié le
01 janvier 2010
Nombre de lectures
24
Langue
English
Poids de l'ouvrage
28 Mo
OntheSelf-organizationofaHierarchical
MemoryforCompositionalObject
RepresentationintheVisualCortex
Dissertation
zurErlangungdesDoktorgrades
derNaturwissenschaften
vorgelegtbeimFachbereichInformatikundMathematik
derGoetheUniversität
inFrankfurtamMain
von
Evgueni(Jenia)Jitsev
ausSmolensk,Russland
Frankfurt(2010)
(D30)VomFachbereichInformatikundMathematikder
GoetheUniversitätalsDissertationangenommen.
Dekan:Prof.Dr.DetlefKrömker
Gutachter:Prof.Dr.ChristophvonderMalsburg,Prof.Dr.RudolfMester,
Prof.Dr.JochenTrieschFürCatherine&CailieAbstract
At present, there is a huge lag between the artificial and the biological information processing sys-
tems in terms of their capability to learn. This lag could be certainly reduced by gaining more insight
into the higher functions of the brain like learning and memory. For instance, primate visual cor-
tex is thought to provide the long-term memory for the visual objects acquired by experience. The
visual cortex handles effortlessly arbitrary complex objects by decomposing them rapidly into con-
stituent components of much lower complexity along hierarchically organized visual pathways. How
this processing architecture self-organizes into a memory domain that employs such compositional
object representation by learning from experience remains to a large extent a riddle.
The study presented here approaches this question by proposing a functional model of a self-organiz-
ing hierarchical memory network. The model is based on hypothetical neuronal mechanisms involved
in cortical processing and adaptation. The network architecture comprises two consecutive layers
of distributed, recurrently interconnected modules. Each module is identified with a localized corti-
cal cluster of fine-scale excitatory subnetworks. A single performs competitive unsupervised
learning on the incoming afferent signals to form a suitable representation of the locally accessible
input space. The network employs an operating scheme where ongoing processing is made of discrete
successive fragments termed decision cycles, presumably identifiable with the fast gamma rhythms ob-
served in the cortex. The cycles are synchronized across the distributed modules that produce highly
sparse activity within each cycle by instantiating a local winner-take-all-like operation.
Equipped with adaptive mechanisms of bidirectional synaptic plasticity and homeostatic activity reg-
ulation, the network is exposed to natural face images of different persons. The images are presented
incrementally one per cycle to the lower network layer as a set of Gabor filter responses extracted from
local facial landmarks. The images are presented without any person identity labels. In the course of
unsupervised learning, the network creates simultaneously vocabularies of reusable local face appear-
ance elements, captures relations between the elements by linking associatively those parts that encode
the same face identity, develops the higher-order identity symbols for the memorized compositions and
projects this information back onto the vocabularies in generative manner. This learning corresponds
to the simultaneous formation of bottom-up, lateral and top-down synaptic connectivity within and be-
tween the network layers. In the mature connectivity state, the network holds thus full compositional
description of the experienced faces in form of sparse memory traces that reside in the feed-forward
and recurrent connectivity. Due to the generative nature of the established representation, the network
is able to recreate the full compositional description of a memorized face in terms of all its constituent
parts given only its higher-order identity symbol or a subset of its parts. In the test phase, the network
successfully proves its ability to recognize identity and gender of the persons from alternative face
views not shown before.
An intriguing feature of the emerging memory network is its ability to self-generate activity spon-
taneously in absence of the external stimuli. In this sleep-like off-line mode, the network shows a
self-sustaining replay of the memory content formed during the previous learning. Remarkably, the
recognition performance is tremendously boosted after this off-line memory reprocessing. The perfor-
mance boost is articulated stronger on those face views that deviate more from the original view shown
during the learning. This indicates that the off-line memory reprocessing during the sleep-like state
specifically improves the generalization capability of the memory network. The positive effect turns
out to be surprisingly independent of synapse-specific plasticity, relying completely on the synapse-
unspecific, homeostatic activity regulation across the memory network.
The developed network demonstrates thus functionality not shown by any previous neuronal model-
ing approach. It forms and maintains a memory domain for compositional, generative object represen-tation in unsupervised manner through experience with natural visual images, using both on- ("wake")
and off-line ("sleep") learning regimes. This functionality offers a promising departure point for fur-
ther studies, aiming for deeper insight into the learning mechanisms employed by the brain and their
consequent implementation in the artificial adaptive systems for solving complex tasks not tractable so
far.Contents
1 Introduction and motivation 1
1.1 Memory and the cortex : the missing area 51 and other mysteries . . . . . . . . . . . . 3
1.2 Neuronal modeling in machine vision . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Objectives and thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2 Elementary cortical module : a neuronal model for unsupervised competitive
learning 25
2.1 Fast neuronal dynamics of a cortical module . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Homeostatic activity regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3 Activity-dependent bidirectional plasticity . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4 Model parameters and simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5 Unsupervised learning with single and distributed modules . . . . . . . . . . . . . . . 45
2.5.1 Unsupervised clustering and learning of facial features . . . . . . . . . . . . . 46
2.5.2 feature extraction and gamma cycle coding scheme . . . . . . . 54
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3 A self-organizing hierarchical visual memory: unsupervised learning of a gener-
ative compositional object representation 65
3.1 Unsupervised learning of object identity and category . . . . . . . . . . . . . . . . . . 68
3.1.1 Network architecture, configurations and experimental setup . . . . . . . . . . 68
3.1.2 Assessing network connectivity organization . . . . . . . . . . . . . . . . . . 70
3.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 Processing properties during memory recall . . . . . . . . . . . . . . . . . . . . . . . 85
3.2.1 Locking : persistent activity after stimulus removal . . . . . . . . . . . . . . . 85
3.2.2 Generative pattern completion and attentional mechanisms . . . . . . . . . . . 86
3.2.3 Recall and encoding over multiple cycles . . . . . . . . . . . . . . . . . . . . 89
3.2.4 Self-generated memory replay in absence of external stimuli . . . . . . . . . . 91
3.3 Rapid, non-synaptic learning via excitability regulation . . . . . . . . . . . . . . . . . 92
3.4 Remarks on scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4 Autonomous off-line memory reprocessing in a sleep-like state and its functional
consequences 113
4.1 Off-line memory reprocessing and generalization boost . . . . . . . . . . . . . . . . . 114
4.1.1 Off-line regime setup and performance evaluation . . . . . . . . . . . . . . . . 114
4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
iContents
5 Résume and outlook 123
5.1 Learning of transformation invariant object representation . . . . . . . . . . . . . . . . 124
5.2 Memory maintenance via off-line memory replay . . . . . . . . . . . . . . . . . . . . 126
5.3 Further forms of learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.4 Epilog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Bibliography 130
Index 163
List of Figures 165
List of Tables 168
Kurzfassung 169
Zusammenfassung in deutscher Sprache 171
1 Einführung und Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
2 Modell eines elementaren kortikalen Moduls . . . . . . . . . . . . . . . . . . . . . . . 173
2.1 Neuronale Mechanismen für unüberwachtes kompetitives Lernen . . . . . . . 173
2.2 Unüberwachtes Lernen mit einzelnen Modulen . . . . . . . . . . . . . . . . . 174
3 Ein selbstorganisierendes hierarchisches Gedächtnisnetzwerk für kompositionelle Ob-
jektrepräsentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .