On complex Fermi curves of two-dimensional periodic Schrödinger operators [Elektronische Ressource] / vorgelegt von Alexander Klauer

icon

177

pages

icon

English

icon

Documents

2011

Écrit par

Publié par

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

177

pages

icon

English

icon

Documents

2011

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

ON COMPLEX FERMICURVES OFTWO-DIMENSIONALPERIODIC SCHRODINGEROPERATORSInauguraldissertationzur Erlangung des akademischen Gradeseines Doktors der Naturwissenschaftender Universitat Mannheimvorgelegt vonDipl.-Phys. Alexander Klaueraus HeidelbergMannheim, 2011Dekan: Professor Dr. Wolfgang E elsberg, Universit at MannheimReferent: Professor Dr. Martin Schmidt, Universitat MannheimKorreferent: Professor Dr. Andreas Knauf, Universitat Erlangen-NurnbergTag der mundlichen Prufung: 3. Juni 2011 AbstractIn dimensionsd 2, the complex Bloch varieties and the associated Fermi curvesof periodic Schrodinger operators with quasi-periodic boundary conditions arede ned as complex analytic varieties. The Schr odinger potentials are takend=2from the Lebesgue space L in the case d> 2, and from the Lorentz{Fourier1;1spaceF‘ in the case d = 2. Then, an asymptotic analysis of the Fermicurves in the cased = 2 is performed. The decomposition of a Fermi curve intoa compact part, an asymptotically free part, and thin handles, is recovered asexpected. Furthermore, it is shown that the set of potentials whose associated1;1Fermi curve has nite geometric genus is a dense subset of F‘ . Moreover, theFourier transforms of the potentials are locally isomorphic to perturbed Fouriertransforms induced by the handles. Finally, an asymptotic family of parametersdescribing the sizes of the handles is introduced.
Voir icon arrow

Publié par

Publié le

01 janvier 2011

Langue

English

Poids de l'ouvrage

1 Mo

ON COMPLEX FERMI
CURVES OF
TWO-DIMENSIONAL
PERIODIC SCHRODINGER
OPERATORS
Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften
der Universitat Mannheim
vorgelegt von
Dipl.-Phys. Alexander Klauer
aus Heidelberg
Mannheim, 2011Dekan: Professor Dr. Wolfgang E elsberg, Universit at Mannheim
Referent: Professor Dr. Martin Schmidt, Universitat Mannheim
Korreferent: Professor Dr. Andreas Knauf, Universitat Erlangen-Nurnberg
Tag der mundlichen Prufung: 3. Juni 2011 Abstract
In dimensionsd 2, the complex Bloch varieties and the associated Fermi curves
of periodic Schrodinger operators with quasi-periodic boundary conditions are
de ned as complex analytic varieties. The Schr odinger potentials are taken
d=2from the Lebesgue space L in the case d> 2, and from the Lorentz{Fourier
1;1spaceF‘ in the case d = 2. Then, an asymptotic analysis of the Fermi
curves in the cased = 2 is performed. The decomposition of a Fermi curve into
a compact part, an asymptotically free part, and thin handles, is recovered as
expected. Furthermore, it is shown that the set of potentials whose associated
1;1Fermi curve has nite geometric genus is a dense subset of F‘ . Moreover, the
Fourier transforms of the potentials are locally isomorphic to perturbed Fourier
transforms induced by the handles. Finally, an asymptotic family of parameters
describing the sizes of the handles is introduced. These parameters are good
candidates for describing the space of all Fermi curves.
Zusammenfassung
In d 2 Dimensionen werden die komplexen Blochvarietat en und die zuge-
horigen Fermikurven periodischer Schrodingeroperatoren mit quasiperiodischen
Randbedingungen als komplex analytische Varietat en de niert. Die Schr od inger-
d=2potentiale entstammen im Falld> 2 dem LebesgueraumL und im Falld = 2
1;1dem Lorentz-Fourier-RaumF‘ . Danach wird im Fall d = 2 eine asymptoti-
sche Analyse der Fermikurven durchgefuhrt. Erwartungsgema erh alt man die
Aufteilung einer Fermikurve in einen kompakten Teil, einen asymptotisch freien
Teil und dunne Henkel. Weiterhin wird gezeigt, dass die Menge der Potentia-
le, deren zugehorige Fermikurve endliches geometrisches Geschlecht hat, eine
1;1 dichte Teilmenge vonF‘ ist. Uberdies sind die Fouriertransformierten der
Potentiale lokal isomorph zu von den Henkeln induzierten, gestorten Fourier-
transformierten. Schlie lich wird eine asymptotische Familie von Parametern,
die die Gro e der Henkel beschreiben, eingef uhrt. Diese Parameter sind gute
Kandidaten, den Raum aller Fermikurven zu beschreiben.Contents
1 Introduction 1
1.1 The inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 What is done in this work . . . . . . . . . . . . . . . . . . . . . . 3
1.3 The inverse problem in physics . . . . . . . . . . . . . . . . . . . 4
1.4 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Function spaces 7
2.1 Measurable functions and Lebesgue spaces . . . . . . . . . . . . . 9
2.2 Sobolev spaces and potential spaces . . . . . . . . . . . . . . . . 17
2.3 Rearrangement-invariant function spaces . . . . . . . . . . . . . . 22
2.4 Lorentz{Zygmund spaces . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Fourier spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6 Bochner spaces and tensor products . . . . . . . . . . . . . . . . 38
2.7 Other spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.7.1 Hardy spaces . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.7.2 Banach manifolds . . . . . . . . . . . . . . . . . . . . . . 47
2.8 Localisation of function space norms . . . . . . . . . . . . . . . . 47
2.8.1 Localisation on the torus . . . . . . . . . . . . . . . . . . 47
2.8.2 Localisation on discrete lattices . . . . . . . . . . . . . . . 52
2.8.3 Translation and levelling operators . . . . . . . . . . . . . 54
3 Schrodinger operators 57
3.1 Schrodinger operators on the torus . . . . . . . . . . . . . . . . . 57
3.2 The resolvent of the free Schrod inger operator . . . . . . . . . . . 59
3.3 Resolvents of general Schrod inger operators . . . . . . . . . . . . 65
4 Fermi curves 75
4.1 Bloch varieties and Fermi curves . . . . . . . . . . . . . . . . . . 75
4.2 The free Fermi curve at d = 2 . . . . . . . . . . . . . . . . . . . . 78
4.3 Asymptotic freeness . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 The constant potential Fermi curve at d = 2 . . . . . . . . . . . . 88
4.5 Asymptotic moduli parameterisation . . . . . . . . . . . . . . . . 91
4.5.1 A nonlinear perturbation of the Fourier transform . . . . 91
4.5.2 Approximation with potentials of nite type . . . . . . . . 104
4.5.3 Per-double-point approximation of the Fermi curve . . . . 115
vvi CONTENTS
5 Summary and outlook 125
5.1 Works with di erent focus . . . . . . . . . . . . . . . . . . . . . . 125
5.2 Compact resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.3 Fermi curve asymptotics . . . . . . . . . . . . . . . . . . . . . . . 129
5.4 Where to go from here . . . . . . . . . . . . . . . . . . . . . . . . 129
A Additional function space theory 133
A.1 Lorentz{Karamata spaces . . . . . . . . . . . . . . . . . . . . . . 133
B Failed extension to Dirac operators 137
B.1 Dirac operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
B.1.1 Dirac operators on the torus . . . . . . . . . . . . . . . . 138
B.1.2 Resolvents of free Dirac operators . . . . . . . . . . . . . 139
B.1.3 Resolvents of general Dirac operators . . . . . . . . . . . 142
B.2 Fermi curves of Dirac operators . . . . . . . . . . . . . . . . . . . 145
B.2.1 Bloch varieties and Fermi curves . . . . . . . . . . . . . . 145
B.2.2 Free and asymptotically free Dirac Fermi curves . . . . . 148
B.3 Asymptotic analysis of Dirac Fermi curves . . . . . . . . . . . . . 150
B.3.1 A nonlinear perturbation of the Fourier transform . . . . 151
B.3.2 Approximation with nite-type Dirac Fermi curves . . . . 157
B.3.3 Failure to estimate the perturbed Fourier transforms . . . 159
Bibliography 163List of Figures
4.1 Cross section ofR . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Cross section of F (0) . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3 Two examples of handles . . . . . . . . . . . . . . . . . . . . . . 85
viiviii LIST OF FIGURESChapter 1
Introduction
1.1 The inverse problem
The Schrodinger equation in d dimensions, d2Z , is given by>0
( +u) = :
dHere, u and are functions from R to C, and is a complex scalar. The
function u acts on by left multiplication. The Laplace operator , on the
other hand, acts as the di erential operator
d 2X @
= ;2@xii=1
dwherex ;:::;x are coordinates forR with respect to the canonical ordered ba-1 d
sis. Hence, ford 2, the Schrodinger equation is a partial di erential equation.
We call the operator +u the Schrodinger operator with potential u. In par-
ticular, the Schrodinger equation is an eigenvalue equation for the Schrodinger
operator in which a non-trivial solution is an eigenfunction belonging to the
eigenvalue. The set of possible eigenvalues is the spectrum of the Schrodinger
operator.
We are interested in periodic Schrodinger operators. By this, we mean two
things.
Firstly, the potentialu must be a periodic function. Ford = 1, this condition
has a very simple formalisation. Just pick someb2R,b = 0, and letu ful

Voir icon more
Alternate Text