Neural networks underlying vocal control in experienced classical singers [Elektronische Ressource] / vorgelegt von Boris Kleber

icon

128

pages

icon

Deutsch

icon

Documents

2009

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

128

pages

icon

Deutsch

icon

Documents

2009

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Neural
networks
underlying
vocal

control
in
experienced

classical
singers
Dissertation
der
Fakultät
für
Informa‐t
uionds
Kognitionswissenschaften
 
der
Eberha‐rKadrl‐sUniversität
Tübinge
nzur
Erlangung
des
Grades
ein
es
Doktors
der
Naturwissesnchafte
n
(Dr.
rer.
na
t.)vorgelegt
von
Dipl. ‐Psych.
Boris
Klebe
raus
Stuttga
rtTübingen
2009 
Tag
der
mündlichen
Qualifikation: 
 15.07.2009
Dekan: 
 Prof.
Dr.‐Ing.
Oliver
Kohlbacher
1.
Berichterstatter:
 
 Prof.
Dr.
Martin
Hautzinger 
2.
Berichterstatter:
 
 Prof.
Dr.
Niels
Birbaumer 

 2 



Meinen
Eltern,
Heidemarie
und
Karl
Kleber 

 3
Acknowledgements
First
and
foremost,
I
would
like
 to
express
my
deep est
gratitude
to
Prof.
Niels
r‐Bibaumer.
I
will
never
forget
when
we
first
met
at
the
Stuttgart
Opera
and
he
asked
me
to
visit
him
at
 his
institute
in
Tübingen,
because
“we
may
have
a
project
you
could
be
inte r‐ested
in”.
It
all
came
differ ently
though.
He
strongly
supported
my
idea
for
a
new
project
involving
singing
and
allowed
me
to
change
over
from
the
BCI 
group,
when
the
DFG
awarded
the
proposal.
 He
also
 entrusted
me
with
the
organization
of
 a
project 
the
con‐tent
of
which 
was
way
beyond 
the
scope 
of
this
dissertation.
I
feel
deeply
honored
by
his
faith
in
me!
Ever
since,
Prof.
Birbaumer
has
 been
a
great
mentor
whose
door 
was
always
open 
when
his
support
was
needed.
Voir icon arrow

Publié le

01 janvier 2009

Nombre de lectures

30

Langue

Deutsch

Poids de l'ouvrage

9 Mo

Neural
networks
underlying
vocal


control
in
experienced


classical
singers

Dissertation

der
Fakultät
für
Informa‐t
uionds
Kognitionswissenschaften
 

der
Eberha‐rKadrl‐sUniversität
Tübinge
n
zur
Erlangung
des
Grades
ein
es

Doktors
der
Naturwissesnchafte
n

(Dr.
rer.
na
t.)
vorgelegt
von

Dipl. ‐Psych.
Boris
Klebe
r
aus
Stuttga
rt
Tübingen

2009 
Tag
der
mündlichen
Qualifikation: 
 15.07.2009

Dekan: 
 Prof.
Dr.‐Ing.
Oliver
Kohlbacher

1.
Berichterstatter:
 
 Prof.
Dr.
Martin
Hautzinger 

2.
Berichterstatter:
 
 Prof.
Dr.
Niels
Birbaumer 


 2 




Meinen
Eltern,
Heidemarie
und
Karl
Kleber 


 3
Acknowledgements

First
and
foremost,
I
would
like
 to
express
my
deep est
gratitude
to
Prof.
Niels
r‐Bi
baumer.
I
will
never
forget
when
we
first
met
at
the
Stuttgart
Opera
and
he
asked
me
to

visit
him
at
 his
institute
in
Tübingen,
because
“we
may
have
a
project
you
could
be
inte r‐
ested
in”.
It
all
came
differ ently
though.
He
strongly
supported
my
idea
for
a
new
project

involving
singing
and
allowed
me
to
change
over
from
the
BCI 
group,
when
the
DFG

awarded
the
proposal.
 He
also
 entrusted
me
with
the
organization
of
 a
project 
the
con‐
tent
of
which 
was
way
beyond 
the
scope 
of
this
dissertation.
I
feel
deeply
honored
by
his

faith
in
me!
Ever
since,
Prof.
Birbaumer
has
 been
a
great
mentor
whose
door 
was
always

open 
when
his
support
was
needed.
 He
is
not
only 
an 
outstanding
scientist
but
also
a

great 
source
of
inspir ation
 that
never
seem
to
run
dry.


I
am
deeply
grateful
to
Prof.
 Martin
Hautzinger,
who
 has
always
been
supportive
du r‐
ing
all
stages
of
this
dissertation.
His
expertise
and
understanding
was
indispensable
 for

accomplishing
this
work. 

Without
Prof.
John
Gru zelier,
I
would
most
likely
not
be
 where
I
am
now .
He
stim u‐
lated
and
fostered
my
interest
in
neuroscience
and
show ed
me
 that
the
sciences
and
the

arts
can
indeed
celebrate
a
successful
marriage.
I
am
indebted
 to
you
 for
leading
me
on

this
path!
Thank
you
ever
so
much! 

I
would
like
to
thank
Dr.
Ralf
Veit
and
Prof.
Martin
Lotze
for
 sharing
their
knowledge

on
 fMRI
with
me,
for
 giving
me
 their
invaluable
expertise
and
friendship,
and
also
for

spending
so
many
hours
with
me
at
the
sc anner
listening
to
“caro
mio
ben”!
I
am
sure

this
song
will
never
be
forgotten! 


The
Institute
of
Medical
Psychology
and
Behavioral
Neurobiology
 is
a
special
place

and
there
are
so
many
people
who
are
responsible
for
that.
 A
big
“ thanks”
in
particular

goes
to
PD
Dr.
Ute
Strehl
for
always
being
so
sup portive
and 
to
Lydia,
Angela,
Slavica,

Hannelore,
and
 Maike.
 There
are
many
more,
and
it
was
 a
privilege
to
work
with
 you

guys!



 4
Finally,
I
would
like
to
thank
my
family!
 Although
I
only
had
10
years
with
my
fat her,

this
was
a
very
precious
time.
He
was
 of
 a
rare
kind
with
his
warm‐heartedness,
his
lov‐
ing
being,
his
charisma
and
 his
 unmatched
musicality
 as
a
widely
respected
concert
i‐p
anist.
He
p laced
a
seed
within
me
 and
the
plant
is
still
growing.
I
will 
thank
you
forever !


There 
are
no
words
to
express
my
gratitude
to
my
mother.
Your
faith
in
me
never
failed

and
I
 cannot
say
 enough
 how
much
I
thank
you
for
this !
Last
but
defi nitely
not
least
I

would
like
to
express
my
deeply
felt
thankfulness
to
Helga,
to
Mark
and
 also
to
Olga !




 5



Eidestattliche
Erklärung


Hiermit
erkläre
ich,
dass
ich
unter
Verwendung
der
im
Literaturverzeichnis
aufge‐
führten
Quellen
und
unter
fachlicher
Betreuung
diese
Dissertation
selbstständig
verfasst

habe.



(Boris
Kleber) 



 6
Table
of
Contents 

Abb reviations..........................................................................................9

Publications:.........................11

Overview 
12

Chapter
1 
 Introduction ..................................................................13

Chapter
2 
 Fundamentals
of
voice
physiology........................15

2.1
Anatomy
of
the
larynx .......... 15

2.2 
Functional
anatomy
of
the
vocal
system ...... 19

2.3 
Trained
and
untrained
voices................................ ................................ ........................... 25

Chapter
3 
 Expertise
and
deliberate
practice.........................27

Chapter
4 
 Principles
of
functional
magnetic
resonance
imaging
(fMRI) ......30 

4.1
Introduction................................ ................................ ................................ .............................. 30

4.2 
The
physics
of
MRI ................. 31

4.3
Functional
MRI
(fMRI) ................................ ......... 34 

4.4 
Experimental
designs
of
fMRI
studies ................................ ........... 36

4.5
Analysis
of
fMRI
data................................ ............ 38

4.5.1
 Spatial
and
temporal
processing ....... 40

4.5.2
 Statistical
analyses ................................ ..43 

Chapter
5 
 Overt
and
imagined
singing
of
an
Italian
aria...47

5.1
Introduction................................ ................................ ................................ .............................. 47

5.2
Methods ...... 52

5.2.1
 Participants: ............... 52

5.2.2
 Singing
Task:................................ ................................ ................................ .............. 52

5.2.3
 fMRI
technique: ........ 54

5.3
Results................................ ......... 56

5.3.1
 Rating
of
imagery: ...56

5.3.2
 EMG ‐measures................................ ................................ ................................ .......... 56

5.3.3
 Results
of
fMRI
analysis ........................ 56

5.4
Discussion ................................ ..63

5.4.1
 Motor
system: ............ 63


 7
5.4.2
 Areas
involved
in
auditory
control:................................ ................................ ..66

5.4.3
 Speech
and
so ng
processing: ............... 68

5.4.4
 Emotional
processing: ................................ ............................ 70

5.5
Conclusions ................................ ............................... 71 

Chapter
6 
 Experience ­dependent
neural
adaptation
in
trained
singers
–


an
fMRI
study ..............................................................73

6.1
Introduction ................................ 73

6.2
Methods ...... 75

6.2.1
 Participants: ................ 75

6.2.2 
 Singing
Experi ence: ................................ .76

6.2.3
 Singing
Task: ................................ .............. 77

6.2.4 
 fMRI
Technique: ........ 77

6.2.5
 fMRI
Data
Analysis: .78

6.3
Results................................ ................................ ................................ ......... 80

6.3.1
 Main
effects: ................................ ................ 80

6.3.2
 Conjunction
analysis: .............................. 80

6.3.3
 Vocal
students
versus
laymen: ........... 81

6.3.4
 Opera
singers
versus
laymen: ................................ ............. 81

6.3.5
 Op era
singers
versus
vocal
students: 81

6.3.6
 Singing
practice
effects: ................................ ......................... 85

6.4
Discussion ................................ ..86

6.4.1
 Sensorimotor
cortex ................................ ............................... 86

6.4.2 
 Auditory
corte x:................................ ........ 88

6.4.3
 Sensory
association
cortex ................... 89

6.4.4 
 Performance
monitoring ....................... 89

6.4.5
 Cerebellum,
basal
ganglia
and
the
thalamus................................ ................ 90

6.5
Conclusions ................................ ................................ ............................... 92 

Chapter
7 
 Summary........94

Bibliography.........................................................98

Appendix
1 
 ......................................................115


Appendix
2 
120 



 8
Abbreviations

A1
 primary
auditory
cort
 ex
AAL
 automatic
anatomic
labeling


ACC 
 anterior
cingulate
cor
tex
ACG
 anterior
cingulate
gyr
 us
BA
 Brodmann
area

BOLD 
 blood
oxygenation
level
dependent 

CBF
 cerebral
blood
fl
ow
cM1
 contralateral
primary
motor
cor
 tex
df
 degrees
of
freed
om
DLPFC 
 dorsolaterparl
efrontal
cort
ex
EMG 
 electromyograph
y
EPI
 echo
planar
imaging 

FDR 
 false
discovery
r
ate
fMRI
 functional
Magnetic
Resonance
Imaging 

FWE 
 family
wise
error
r
ate
HRF
 hemodynamic
response
function 

HDR 
 hemodynamic
response 

Hipp 
 hippocampus 

IPC
 inferiorpa
 rietal
cort
ex
LI
 lateralization
inde
x
M1
 primary
motor
corte
x
MNI
 Montreal
Neurological
Institu
te
MRI
 magnetic
resonance
imaging 

MyHC 
 myosin
heavy
chain 

NMR 
 nuclear
magnetic
resonance


p 
 probability

PFC
 prefrontal
cort
ex
PMC 
 premotor
corte
x
RF
 radio
frequenc
y

ROI
 region
of
interes
t
S1
 primary
somatosensory
corte
x
SD 
 standard
deviati
on
SFG
 superior
frontal
gyr
 us
SI
I secondary
somatosensory
corte
x

 9
SMA
 supplementary
motor
cortex

SPL
 superior
parietal
cor
tex
SPM
 statistical
parametrmiacappiln
g 

SPS
 samples
per
second 

SPSS
 statistical
package
for
the
social
sci
ence
STF
 slow
twitch
muscle
fiber
s

Voir icon more
Alternate Text