Modélisation 0D - 1D de la chaîne d'air des moteurs à combustion interne dédiée au contrôle, 0D - 1D Modeling of the Airpath of internal combustion engines for control purposes

icon

268

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

268

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Sous la direction de Pascal Higelin
Thèse soutenue le 15 décembre 2010: Orléans
La présente thèse porte sur la modélisation dédiée au contrôle des phénomènes physiques se produisant au travers des restrictions de la chaîne d’air du moteur. L’objectif est d’assurer la précision des modèles tout en limitant les temps de calcul associés. En effet, les modèles dédiés au contrôle nécessitent un temps de calcul court (proche du temps réel) afin d’être exploitables dans un processus de développement. En parallèle de cela, les normes concernant les rejets polluants sont de plus en plus drastiques, et nécessitent de prendre en compte finement les phénomènes physiques mis en jeu. Dans une première partie, les équations des phénomènes physiques liés aux turbocompresseurs radiaux sont introduites dans une approche cartographique. Les équations fondamentales des turbomachines sont développées et utilisées afin de construire une méthode d’interpolation / extrapolation de champs turbocompresseur expérimentaux incomplets. Dans un second temps, les résultats d’essais réalisés lors de la thèse sont utilisés pour identifier les transferts thermiques au sein des turbocompresseurs. Un modèle dynamique d’échange thermique est ensuite construit. Le modèle final permet d’obtenir une cartographie complète des champs compresseur et turbine, tout en prenant en compte l’impact des transferts thermiques sur les performances des turbomachines. La seconde partie porte sur la modélisation des restrictions (soupapes, changements de section…) rencontrées sur les MCI. Une méthode pour la résolution quasistatique des équations Euler 1D complètes (masse, énergie, moment) est proposée afin de construire les cartographies associées aux restrictions considérées, sans introduire de coefficient de correction expérimental. Ces cartographies sont utilisables en tant que modèles moyens ou utilisées comme conditions limites de codes aérodynamiques 1D. En cas de couplage avec un code 1D, une méthode de correction d’entropie basée sur un algorithme de linéarisation est proposée afin de réduire le temps de convergence aux conditions limites du domaine de calcul.Finalement, les développements sont validés expérimentalement en écoulements stabilisés et transitoires.
-Modélisation 0D - 1D de la chaîne d’air
The present thesis will focus on the modeling of the airpath components for the development of the control laws. The goal is to ensure the accuracy of the models while liming the associated calculation time. Indeed, models associated to the development of control laws must ensure law calculation time in order to be compliant with automotive development processes. In the same time, pollutant emissions regulations are increasingly restrictive, which has a direct impact on the required accuracy level of the models. In a first part, the physical equations of the radial turbocharger are introduced in a datamap-based approach. The fundamental equations of turbomachines are developed and processed in order to build an interpolation / extrapolation method for incomplete turbocharger datamaps. Then, measurements from tests realized during the thesis are analyzed in order to identify the heat exchanges occurring within turbochargers. A dynamical heat exchange model is then built. The final turbocharger model allows to build complete turbocharger datamaps, while taking into account the effect of thermal exchanges. The second part focuses on the modeling of ICE flow restrictions (valves, change of pipe area…). A method is proposed in order to solve the quasistatic formulation of the Euler 1D equation (mass, energy, momentum). This allows to build datamaps associated to the studied components, without having to introduce an experimental corrective coefficient. These datamaps can be used as mean-value models or as boundary conditions of a 1D numerical scheme. In case of coupling with a 1D scheme, an entropy correction scheme based on local linearization has been developed in order to improve the convergence speed at the boundary condition. Finally, proposed developments are validated experimentally under stabilized and transient flow conditions.
-0D - 1D modeling of the airpath
Source: http://www.theses.fr/2010ORLE2065/document
Voir icon arrow

Publié par

Langue

English

Poids de l'ouvrage

9 Mo



UNIVERSITÉ D’ORLÉANS



ÉCOLE DOCTORALE SCIENCES ET TECHNOLOGIES

LABORATOIRE PRISME

THÈSE présentée par :
Guillaume MARTIN


soutenue le : 15 Décembre 2010

pour obtenir le grade de : Docteur de l’Université d’Orléans
Discipline : Énergétique


Modélisation 0D - 1D de la Chaîne d’Air des MCI
dédiée au Contrôle
-
0D - 1D Modeling of the Airpath of IC Engines
for Control Purposes


THÈSE dirigée par :
Pascal HIGELIN Professeur, Université d’Orléans - PRISME

RAPPORTEURS :
Angelo ONORATI Professeur, Politecnico di Milano, Energy Department
Jan MACEK Professeur, Czech Technical University – Dept. of Automotive
and Aerospace Engineering
___________________________________________________________________

JURY:
Georges DESCOMBES Professeur, CNAM - Président du jury
David CHALET Maître de Conférences, Centrale Nantes, LMF-EMCI
Alain CHARLET Maître de Conférences, Université d’Orléans, PRISME
Vincent TALON Docteur, Renault SAS

tel-00623122, version 1 - 13 Sep 2011ii
tel-00623122, version 1 - 13 Sep 2011Acknowledgments
This thesis was carried out within the advanced electronics research department at Renault SAS, in part-
nership with the Institut PRISME (Orléans University, France). The work has been financed via a CIFRE
convention.
I thank M. Vincent Talon who defined the subject and provided me with technical inspiration during the
last three years. I also want to thank M. Pascal Higelin, the advisor of this thesis, for the way he trusted
on me and his guidance throughout the present research work. I would also like to express my thanks to
M. Alain Charlet, who invested a great amount of his time for the support during the algorithms and test
benches development.
I would like to express my thanks and gratitude to M. Angelo Onorati and M. Jan Macek for having
agreed to review this thesis report, and to M. Georges Descombes and M. David Chalet for being members
of the thesis committee.
In Guyancourt, I want to express my gratitude to MM. Luc Bourgeois, Hubert Béchard, Christian Taffin
and Patrick Bastard for their trust and for the autonomy they allowed me for my research work. A wink to
the Phd students ’coffee’ team : David, Maria, Felipe, Maxime and last but not least Nicolas.
In Orléans, I would like to thank the test bench technical team, particularly Nicolas, Benoît, Bruno and
Julien for their help during the development of the steady flow benches. I also want to thank M. Pascal
Bréjaud for the many ’boundary condition’ exchanges we had during the redaction of our paper.
In Nantes, I thank the Internal Combustion Engine team directed by M. Pascal Chessé for their help and
the measurements performed on the turbocharger test bench.
Finally, I would like to thank my friends and relatives who experienced the side-effects of Phd life during
the last three years : Daphné (rockin’ it since 2003), my parents and sister, and my good ol’ time friends :
Vincent and Bb, Pebs, Pierre-Yves, Jb, Maxime and Seb.
iii
tel-00623122, version 1 - 13 Sep 2011iv
tel-00623122, version 1 - 13 Sep 2011Il est vrai qu’en fait de systèmes
il faut toujours se réserver le droit de rire le lendemain de ses idées de la veille.
It’s true that when it comes to systems
you must always reserve the right to laugh tomorrow at the ideas you had the night before.
Voltaire - L’A.B.C. - 1768
v
tel-00623122, version 1 - 13 Sep 2011vi
tel-00623122, version 1 - 13 Sep 2011Table of Contents
Table of Figures xi
I Context and Stakes of the Study
1 Context of the study : control laws development of the Internal Combustion Engine
(ICE) 3
1.1 Compliance to pollutant emissions limitations vs. production cost . . . . . . . . . . . . . 3
1.2 Engine performance vs. fuel consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Reduction of the development time vs. R&D expenses . . . . . . . . . . . . . . . . . . . . 7
1.4 Impact on the engine control and its associated engine models . . . . . . . . . . . . . . . 8
1.5 Role of the airpath regarding the control of modern engines . . . . . . . . . . . . . . . . . 10
2 Goals and structure of the study 11
3 Key components and systems for the control of automotive engine airflow 13
3.1 Exhaust Gas Recirculation (EGR) loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Superchargers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Poppet valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Engine Control Unit (ECU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
II Gas exchange processes through turbochargers 19
4 Literature review 21
4.1 Extrapolation and interpolation of experimental turbocharger data maps . . . . . . . . . 21
4.2 Building of turbocharger data maps based on turbomachinery equations . . . . . . . . . . 25
4.2.1 Turbomachine thermodynamical performance . . . . . . . . . . . . . . . . . . . . . 25
4.2.2 Turbhine fully-physical-based calculation . . . . . . . . . . . . . . . . . . . . 26
4.3 Thermal transfers within turbochargers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Gas exchange processes through turbochargers : proposed thesis developments . . . . . . 34
5 Experimental apparatus 35
5.1 Design of the test bench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Visualization and post-treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
vii
tel-00623122, version 1 - 13 Sep 2011Table of Contents
6 Physics-based extrapolation of turbochargers data maps 41
6.1 Turbomachinery characteristic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.1 Compressor c curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.2 Turbine c curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Transposition of the characteristic curves to the turbocharger data maps . . . . . . . . . . 43
6.3 Development of a physical-based turbocharger data map-fitting method . . . . . . . . . . 46
6.3.1 Compressor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3.2 Turbine model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.4 Results and validation of the developed models . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4.1 Application and results of the developed method on experimental data from suppliers 52
6.4.2 Validation of the extrapolation process with respect to turbocharger test bench data 57
7 Turbocharger thermal exchanges 59
7.1 Thermal exchanges calculation from measurements . . . . . . . . . . . . . . . . . . . . . . 59
7.1.4 Bearing friction model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.2 Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.2.1 Compressor data maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.2.2 Turbine data maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2.3 Extrapolation of the compressor adiabatical data map . . . . . . . . . . . . . . . . 69
7.2.4 Study of the parameters influencing the heat transfers . . . . . . . . . . . . . . . . 71
7.3 Heat transfer modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.4 Building process of the global turbocharger model . . . . . . . . . . . . . . . . . . . . . . 80
Conclusions of the work on gas processes exchange through turbochargers 83
III Gas Exchange processes through Flow Restrictions 85
8 Literature review 87
8.1 Pipe flow governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.2 Pipe flow gov resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2.1 Mean-value models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2.2 1-D spatial discretization schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.2.3 multi-D spatial schemes . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.3 ICE boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.3.1 The MOC applied to boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 94
8.3.2 Boundary conditions equations and hypotheses . . . . . . . . . . . . . . . . . . . . 98
8.4 Gas exchange processes : proposed thesis developments . . . . . . . . . . . . . . . . . . . 104
9 Experimental apparatus 107
9.1 Cylinder head steady flow bench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.2 Diaphragm steady flow bench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
9.3 Cylinder

Voir icon more
Alternate Text