Modeling, simulation, and concept studies of a fuel cell hybrid electric vehicle powertrain [Elektronische Ressource] / von Markus Özbek

icon

123

pages

icon

English

icon

Documents

2010

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

123

pages

icon

English

icon

Documents

2010

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Modeling, Simulation, and Concept Studies of aFuel Cell Hybrid Electric Vehicle PowertrainVon der Fakult¨at fur¨ Ingenieurwissenschaften,Abteilung Maschinenbau und VerfahrenstechnikderUniversit¨at Duisburg-Essenzur Erlangung des akademischen GradeseinesDoktors der IngenieurwissenschaftenDr.-Ing.genehmigte Dissertationvon¨Markus OzbekausS¨ odert¨alje, SchwedenGutachter: Univ.-Prof. Dr.-Ing. Dirk S¨ offkerProf. Dr.-Ing. Dieter SchrammTag der mundlichen¨ Prufung:¨ 29. M¨arz 2010Dedicated to my grandfather¨Musa Ozbek1907 - 2010who lived a long and prosperous lifeIVAcknowledgementThe work presented in this thesis was initiated by the German federation of indus-trial research associations (AiF) together with the German association of powertraintechnology (FVA) and conducted during my doctoral studies at the Chair of Dy-namics and Control at the University of Duisburg-Essen.First of all, I would like to thank my supervisor Univ.-Prof. Dr.-Ing. Dirk S¨ offker forhis great support, encouragement, and help. Without him, this work would neverinitiate nor finish.I would also like to thank Prof. Dr.-Ing. Dieter Schramm for his effort being theco-reviewer for my thesis.This work was conducted in collaboration with the Chair of Energy Technologyat the University of Duisburg-Essen and a great appreciation is given to rer.-nat.Prof. Angelika Heinzel, Dr.-Ing.
Voir icon arrow

Publié le

01 janvier 2010

Nombre de lectures

42

Langue

English

Poids de l'ouvrage

4 Mo

Modeling, Simulation, and Concept Studies of a
Fuel Cell Hybrid Electric Vehicle Powertrain
Von der Fakult¨at fur¨ Ingenieurwissenschaften,
Abteilung Maschinenbau und Verfahrenstechnik
der
Universit¨at Duisburg-Essen
zur Erlangung des akademischen Grades
eines
Doktors der Ingenieurwissenschaften
Dr.-Ing.
genehmigte Dissertation
von
¨Markus Ozbek
aus
S¨ odert¨alje, Schweden
Gutachter: Univ.-Prof. Dr.-Ing. Dirk S¨ offker
Prof. Dr.-Ing. Dieter Schramm
Tag der mundlichen¨ Prufung:¨ 29. M¨arz 2010Dedicated to my grandfather
¨Musa Ozbek
1907 - 2010
who lived a long and prosperous lifeIV
Acknowledgement
The work presented in this thesis was initiated by the German federation of indus-
trial research associations (AiF) together with the German association of powertrain
technology (FVA) and conducted during my doctoral studies at the Chair of Dy-
namics and Control at the University of Duisburg-Essen.
First of all, I would like to thank my supervisor Univ.-Prof. Dr.-Ing. Dirk S¨ offker for
his great support, encouragement, and help. Without him, this work would never
initiate nor finish.
I would also like to thank Prof. Dr.-Ing. Dieter Schramm for his effort being the
co-reviewer for my thesis.
This work was conducted in collaboration with the Chair of Energy Technology
at the University of Duisburg-Essen and a great appreciation is given to rer.-nat.
Prof. Angelika Heinzel, Dr.-Ing. Jurgen¨ Roes, their technical support Jochen Binde-
mann, and especially my working partner Lars Wulb¨ eck.
I would like to thank all my long time working partners at the Chair of Dynamics
and Control; Hammoud Al-Joummaa, Kai-Uwe Dettmann, Dennis Gamrad, Frank
Heidtmann, Yan Liu, Matthias Marx, and Mahmud-Sami Saadawia for their help
and support and our secretaries Yvonne Vengels and Doris Schleithoff for their help
with the administration. I wish them all the best in their future work. I would also
like to thank all students who I supervised in their project works, bachelor-, and
master theses. This includes Nguyen Binh, Andr´e Heßling, Xinfeng Huang, Sebas-
tian Krins, Bertrand Teck Ping Ng, Yew Kok Poong, Adalbert Rudnicki, Theresia
Rusch, Tharsis Ghim Han Teoh, and Shen Wang. I wish them all good luck in their
studies.
Special thanks are given to my prior supervisor and mentor, Prof. Svante Gunnarsson
at the Chair of Automatic Control at Link¨ oping University in Sweden, for giving
me the interest for control technique.
Finally but mostly I would like to thank my brothers and sisters and especially my
parents whom without their love and support I would never be able to conduct this
work.
¨Duisburg, May 2010 Markus OzbekV
Contents
Nomenclature VIII
1 Introduction 1
1.1 Fuelcels.................................. 3
1.2 New powertrain technologies . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Hybridvehicles.......................... 5
1.2.2 Zero-emission electric vehicles . . . . . . . . . . . . . . . . . . 7
1.3 State-of-the-Art.............................. 8
1.4 Project goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Hardware-in-the-Loop test rig 10
2.1 Fuelcelsystem.1
R2.1.1 Ballard Nexapowermodule..................13
2.1.2 Alternativefuelcelsystem ...................14
2.1.3 Lifetimeoffuelcels .......................17
2.2 Energystorageaccumulators19
2.2.1 SuperCaps.............................19
2.2.2 Bateries..............................20
2.3 DC/DC-converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Electricmotors..............................23
2.4.1 Drive-motor24
2.4.2 Load-motor25
2.5 Implementationandexperimentalstudies................25
2.5.1 Load profile implementation . . . . . . . . . . . . . . . . . . . 25
2.5.2 Vehicleimplementation......................27VI Contents
3 Modeling the hybrid powertrain 28
3.1 Fuelcelsystemmodel..........................28
3.1.1 PEMfuelcellstackmodel....................29
3.1.2 Air supply system model . . . . . . . . . . . . . . . . . . . . . 30
3.1.3 Temperaturedynamicsmodel..................35
3.2 SuperCapmodel .............................36
3.3 Batterymodel...............................38
3.3.1 Capacitymodel..........................38
3.3.2 Voltagemodel.40
3.4 DC/DC-converter model . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Validationofthecomponentmodels...................44
3.5.1 Validationofthefuelcelmodel.................4
3.5.2 ValidationoftheSuperCapmodel................47
3.5.3 Validationofthebatterymodel.................50
3.5.4 Validation of the DC/DC-converter . . . . . . . . . . . . . . . 55
3.5.5 Validationofthehybridsystem.................57
4 Control of hybrid system components 59
4.1 Controloffuelcelsystems........................59
4.2 Controlofthefuelcelsystem......................60
4.2.1 Efficiencyconstraint.61
4.2.2 Static Feed-Forward control . . . . . . . . . . . . . . . . . . . 62
4.2.3 Linearizationofthefuelcelmodel...............63
4.2.4 Optimalcontrol..........................64
4.2.5 Gain-schedulingcontrol .....................6
4.2.6 Hydrogenvalvecontrol......................67
4.3 Results...................................69
4.4 Control of DC/DC-converter . . . . . . . . . . . . . . . . . . . . . . . 73Contents VII
5 Parametrization and evaluation 75
5.1 Systemdesignfromgivenloadprofiles .................75
5.1.1 Degre-of-Hybridization(DoH) .76
5.1.2 BateriesorSuperCaps......................79
5.1.3 Sizing the SuperCaps of the hybrid system . . . . . . . . . . . 80
5.1.4 Simulationresults.........................82
5.2 Choiceoftopology............................83
5.2.1 Topology A: Basic topology . . . . . . . . . . . . . . . . . . . 83
5.2.2 TopologyB:Rangeextender...................84
5.2.3 TopologyC:Fulhybrid.....................86
5.2.4 Topology D: Extended topology . . . . . . . . . . . . . . . . . 88
5.3 Evaluation of the dynamics of the hybrid system . . . . . . . . . . . . 89
6 Powermanagement 93
6.1 Theory...................................93
6.2 PMI:Ratelimiter............................94
6.3 PMI:Maximumfuelcelpower.....................96
6.4 PMII:ConstantSoC-level .......................96
6.5 Experimentalresultsandevaluation...................96
7 Summary and outlook 102
7.1 Scientificcontribution ..........................102
7.2 Limitations................................103
7.3 Futureaspects...............................103
Bibliography 105VIII
Nomenclature
Constants
Symbol Parameter Unit Value
b Blower motor constant [Nms/rad] 2.3e-4cm
d Blower diameter [m] 0.0508c
k A Product between thermalst st
conductivity and conducting
surface area of stack [J/K] 6.0
k Blower motor constant [Nm/A] 0.089cm
k Blower motort [Vs/rad] 0.0752v
m C Product between mass andst p,st
specific heat capacity of stack [J/K] 2e4
m Vehicle total mass [kg] 201.3veh
n Number of fuel cells [-] 45fc
p Ambient pressure [Pa] 101325amb
p Blower p [Pa]cp
t Membrane thickness [cm] 3e-3m
2A Fuel cell active area [cm]50fc
2A Vehicle front area [m]0.83veh
C Vehicle drag coefficient [-] 0.37d
C Specific air heat capacity [J/kgK] 1004p,a
C Specific coolant heat capacity [ 4183p,cool
C Specific vapor heat capacity [J/kgK] 1860p,v
F Faraday constant [C] 96485
ΔG Difference of Gibbs free energyf
for fuel cell reactants [J/mol] 237.2e3
2J Inertia of blower motor [kgm ] 7.245946e-4cm
2J of blower and motor [kgm ] 7.25e-4cp
L Inductance of blower motor [H] 4.98e-3cm
M Vapor molar mass [kg/mol] 18.02e-3v
M Hydrogen molar mass 2e-3H2
M Nitrogen molar mass [kg/mol] 28e-3N2
M Oxygen molar mass [kg/mol] 32e-3O2
23N Avogadro’s number [-] 6.022x10
R Universal gas constant [J/molK] 8.3145
R Air gas constant [J/kgK] 286.9a
R Battery internal resistance [Ω] 0.08bat
R Blower motorcm
internal resistance [Ω] 0.32
R Vehicle gear ratio [m] 5gearNomenclature IX
Symbol Parameter Unit Value
R SuperCap internal resistance [Ω] 0.012i,sc
R Vapor gas constant [J/kgK] 461.5v
R Hydrogen gas constant 4124.3H2
R Nitrogen gast [J/kgK] 296.8N2
R gas constant 259.8O2
R Vehicle wheel radius [m] 0.223w
T Ambient temperature [K] 298amb
T Coolant water temperature [K] 353cool
T Blower inlet temp [K] 298cp,in
3V Anode volume [m ] 1.08e-4an
γ Air heat capacity ratio [-] 1.4a
δ Corrected pressure [-] 1
η Blower motor efficiency [%] 100cm
θ Corrected temperature [-] 298/288
3ρ Air density [kg/m]1.23a
ΔH Hydrogen higher heating value [J/kg] 141.9e9u,H2
Δ H condensation enthalpy of the wa- [J/kg] 2260e3v
ter
ΔS Reaction entropy [J/molK] -326.36X Nomenclature
Variables
Symbol Parameter Unit
E Fuel cell open circuit voltage [V]o,fc
i Blower motor current [A]cm
i SuperCap current [A]sc
i Fuel cell stack current [A]st
I Battery current [A]bat
2J Vehicle wheel inertia [kgm ]w
m Hydrogen mass in anode [kg]H2
m Nitrogen mass in cathode [kg]N2
m Oxygen mass in cathode [kg]O2
m Water mass in anode [kg]w,an
m Water mass in cathode [kg]w,ca
Ma Inlet mach number [-]
M Vehicle wheel torque from air resistance [Nm]

Voir icon more
Alternate Text