110
pages
English
Documents
2010
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
110
pages
English
Documents
2010
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
Publié par
Publié le
01 janvier 2010
Nombre de lectures
53
Langue
English
Poids de l'ouvrage
3 Mo
Fakultät für Naturwissenschaften - Department Physik
Micro- and nanodevices
for optoelectronic applications
based on II-VI semiconductors
Dem Department Physik der Universität Paderborn
zur Erlangung desakademischen Grades eines
Doktors der Naturwissenschaften vorgelegte
Dissertation
von M.Sc. Marina Panfilova
Paderborn, 2010
Promotionskommission
Prof. Dr. Wolf Gero Schmidt (Vorsitzender)
Prof. Dr. Klaus Lischka (1. Gutachter)
Prof. Dr. Christine Silberhorn (2. Gutachter)
Dr. Christof Hoentzsch
Tag der Einreichung: 21. Mai 2010
Tag der mündlichen Prüfung: 12. Juli 2010
Abstract
In the past decade, there has been tremendous activities in the development of a
quantum computer, a machine that would exploit the full complexity of a many-particle wave function to solve a computational problem. Some of the active key
components may rely on semiconductor devices with opto-electronic functions. In this
thesis, devices like microdisk laser and photodiode based on II-VI semiconductor systems
including impurities and quantum dots for quantum information technology were studied.
We find that wide-bandgap II-VI semiconductor alloys are promising materials for short-
wavelength opto-electronic devices with applications in photonics and quantum
information technology.
Excitons bound to fluorine donors in ZnSe appear to meet most requirements for
quantum memories. Lasing in ZnSe donor-bound excitons may be particularly useful as a
component in quantum information processing devices which require a low-noise source
laser, nearly resonant with the bound-exciton transitions used for qubit initialization,
control, and readout. Semiconductor microdisks are promising for applications such as
low-threshold lasers [McCall], [Slusher] and efficient solid-state based single photon
emitters [Zwiller]. In this work, a fabrication process of microdisks based on a strained
fluorine-doped ZnSe quantum well was developed. The structural properties of these
microdisks, such as strain distribution and the density of extended defects were studied.
Also, the optical characteristics of the disks were investigated and lasing was observed. We
find that the laser threshold of our optically pumped devices is extremely low, among the
latest values reported so far for a devices in the blue-green spectral area.
While microdisk cavities are applicable as low-threshold lasers, membranes constitute
waveguides structures for interconnecting microdisks in integrated photonic circuits. In
this context ZnSe/ZnMgSe membrane structures were fabricated. Investigations of strain
distribution and of extended defects density were carried out, demonstrating a step towards
the fabrication of membranes with a photonic crystal for single-photon emitters and
integrated optical waveguide systems with II-VI compound semiconductors.
Another approach to realise semiconductor qubits for quantum technology makes use of
a two-level system which is formed by the exciton ground state in a single quantum dot.
For this reason, self assembled Stranski-Krastanov CdSe quantum dots were embedded in
ZnSe and enclosed in a Schottky photodiode with a near-field shadow mask on a semi-
transparent contact. Electrical and optical access was provided to investigate the quantum
states of individual quantum dot excitons. We found a redshift of the photoluminescence
due to the quantum confined Stark effect at increasing negative bias voltage. At resonant
excitation of the quantum dot excitons, a photocurrent signal was achieved which is
considered as the first demonstration of an electric readout of the wide-gap CdSe quantum
dots.
Contents
1 Introduction..................................................................................................................3
2 Experimental Methods ................................................................................................7
2.1 Molecular beam epitaxy........................................................................................7
2.2 High resolution X-ray diffraction ........................................................................9
2.3 Raman spectroscopy............................................................................................10
2.4 Photoluminescence spectroscopy13
3 Low-Threshold ZnSe Microdisk Laser....................................................................23
3.1 Basics of microdisk laser.....................................................................................26
3.2 Fabrication of microdisks ...................................................................................29
3.2.1. Growth procedure of quantum well structures .........................................30
3.2.2. Photolithography ..........................................................................................33
3.2.3. Reactive ion etching......................................................................................34
3.2.4. Wet chemical undercut ................................................................................34
3.2.5. SEM analysis.................................................................................................35
3.3 Structural properties of microdisks...................................................................36
3.3.1. Micro-Raman spectroscopy.........................................................................36
3.3.2. Micro-photoluminescence............................................................................41
3.4 Fluorine impurities in microdisks ......................................................................44
3.5 Lasing in ZnSe microdisks..................................................................................47
— 1 — 4 The ZnSe Micro-Membranes....................................................................................61
4.1 Fabrication of membranes ..................................................................................62
4.1.1. Electron-beam lithography ..........................................................................62
4.1.2. Reactive Ion Etching.....................................................................................62
4.1.3. Wet chemical undercut.................................................................................63
4.2 Structural and optical properties of the membranes .......................................65
4.2.1. Investigations by atomic force microscopy.................................................65
4.2.2. Micro-Raman spectroscopy .........................................................................67
4.2.3. Micro-photoluminescence ............................................................................69
5 The ZnSe/CdSe Nano-Photodiode73
5.1 Fundamentals of single quantum dot photodiodes ...........................................75
5.1.1. Sample structure and electric field .............................................................75
5.1.2. Quantum confined Stark effect ...................................................................76
5.1.3. Tunneling.......................................................................................................77
5.2 Fabrication of CdSe QD photodiodes ................................................................78
5.3 Optical characteristics of the photodiodes.........................................................81
5.4 Photocurrent spectroscopy..................................................................................85
6 Conclusions and Outlook ..........................................................................................89
Symbols and Abbreviations ..............................................................................................91
Bibliography .......................................................................................................................93
List of Publications ..........................................................................................................101
Acknowledgements103
— 2 —
1 Introduction
Today many people are familiar with at least the consequences of Moore’s Law [1]
published