Mechanical properties of ultrafine-grained Ti-6Al-4V ELI alloy processed by severe plastic deformation [Elektronische Ressource] = (Mechanische Eigenschaften einer ultrafeinkörnigen TiAl6V4-ELI-Legierung hergestellt mittels Hochverformung) / vorgelegt von Lilia May

icon

164

pages

icon

Documents

2009

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

164

pages

icon

Documents

2009

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Mechanical properties of ultrafine-grained Ti-6Al-4V ELI alloy processed by severe plastic deformation (Mechanische Eigenschaften einer ultrafeinkörnigen TiAl6V4 ELI Legierung hergestellt mittels Hochverformung) Der Technischen Fakultät der Universität Erlangen-Nürnberg zur Erlangung des Grades DOKTOR-INGENIEUR vorgelegt von Lilia May Erlangen 2009 Als Dissertation genehmigt von der Technischen Fakultät der Universität Erlangen-Nürnberg Tag der Einreichung: 30. 06. 2009 Tag der Promotion: 01. 12. 2009 Dekan: Prof. Dr.-Ing. R. German Berichterstatter: Prof. Dr. rer. nat. M. Göken Prof. Dr. R.Z. Valiev Table of contents I 1. INTRODUCTION AND RESEARCH OBJECTIVES 1 2. LITERATURE REVIEW 4 2.1. Biomedical metallic materials 2.2. Titanium alloy Ti-6Al-4V 9 2.2.1. Development of Ti-6Al-4V 2.2.2. Metallurgy of Ti-6Al-4V 11 2.3. Formation of ultrafine-grained microstructure by SPD 16 2.4. Microstructure of Ti-6Al-4V and its influence on mechanical properties 18 2.4.1. Microstructure and monotonic stress-strain behavior 18 2.4.2. Microstrucmonotonic stress-strain behavior under superplastic conditions 29 2.4.3. Microstructure and cyclic stress-strain behavior 36 3. MATERIAL AND EXPERIMENTAL PROCEDURES 50 3.1. Initial materials 50 3.2.
Voir icon arrow

Publié le

01 janvier 2009

Poids de l'ouvrage

17 Mo

Mechanical properties of ultrafine-grained Ti-6Al-4V ELI
alloy processed by severe plastic deformation
(Mechanische Eigenschaften einer ultrafeinkörnigen
TiAl6V4 ELI Legierung hergestellt mittels Hochverformung)
Der Technischen Fakultät der Universität Erlangen-Nürnberg zur Erlangung des Grades DOKTOR-INGENIEUR vorgelegt von Lilia May Erlangen 2009
Als Dissertation genehmigt von der Technischen Fakultät der Universität Erlangen-Nürnberg Tag der Einreichung: 30. 06. 2009 Tag der Promotion: 01. 12. 2009 Dekan: Prof. Dr.-Ing. R. German Berichterstatter: Prof. Dr. rer. nat. M. Göken Prof. Dr. R.Z. Valiev
2.3.
2.1.
MATERIAL AND EXPERIMENTAL PROCEDURES
3.
3.1.
4.
4.1.
RESULTS AND DISCUSSION
50
1.
2.
5252525354
50505151
62
62
575758585960
50
Biomedical metallic materials
LITERATURE REVIEW
INTRODUCTION AND RESEARCH OBJECTIVES
16
Table of contents
Table of contents
Initial materials
3.2.Processing of Ti-6Al-4V ELI 3.2.1.Heat treatment 3.2.2.Equal channel angular pressing 3.2.3.Multicycle extrusion
3.3.Mechanical tests 3.3.1.Hardness and microhardness measurements 3.3.2.Tensile tests 3.3.3.Compression tests 3.3.4.Fatigue tests
Formation of ultrafine-grained microstructure by SPD
 I
1
4
4
9911
Microstructure of Ti-6Al-4V
2.4.Microstructure of Ti-6Al-4V and its influence on mechanical properties 182.4.1.Microstructure and monotonic stress-strain behavior 182.4.2.Microstructure and monotonic stress-strain behavior under superplastic conditions 292.4.3.36Microstructure and cyclic stress-strain behavior
3.4.Microstructural investigations 3.4.1.Light microscopy 3.4.2.Scanning electron microscopy 3.4.3.Transmission electron microscopy 3.4.4.X-ray diffraction measurements 3.4.5.Atomic force microscopy
2.2.Titanium alloy Ti-6Al-4V 2.2.1.Development of Ti-6Al-4V 2.2.2.Metallurgy of Ti-6Al-4V
II Table of contents 4.1.1.Equal channel angular pressing of VT-6 624.1.2.68Equal channel angular pressing of Ti-6Al-4V ELI 4.1.3.Ti-6Al-4V ELI 70Equal channel angular pressing and extrusion of 4.1.4.73Preliminary heat treatment of Ti-6Al-4V ELI 4.1.5.Microstructure of Ti-6Al-4V ELI for fatigue experiments 754.1.6.Discussion 82
4.2.Mechanical properties under monotonic loads 854.2.1.Tensile properties and hardness at room temperature 854.2.2.Mechanical properties at elevated temperatures 894.2.3.91Microstructural studies after tensile deformation 4.2.4.Compression properties and strain rate sensitivity at elevated temperature  934.2.5.96Microstructural studies after compression deformation 4.2.6.Discussion 98
4.3.Mechanical properties under cyclic loads 4.3.1.Cyclic deformation behavior 4.3.2.Finite life criterion (ε-N curves) 4.3.3.Cyclic stress – strain curves 4.3.4.Infinite life criterion (S-N curves) 4.3.5.Damage mechanisms 4.3.6.Discussion
5.
5.1.
5.2.
6.
7.
7.1.
CONCLUSIONS AND OUTLOOK
English
German
REFERENCES
APPENDICES
X-ray diffraction patterns for Ti-6Al-4V ELI
100100104107108111121
128
128
130
133
150
150
List of symbols and abbreviations
List of symbols and abbreviations
Latin symbols and abbreviations A0Initial cross-sectional area of the sample a0Lattice parameter AFM Atomic force microscopy / microscope b Fatigue strength exponent bcc Body-centered cubic lattice c Fatigue ductility exponent CG Conventional grain size d Grain size / diameter E Young’s modulus e Total deformation strain ECAP Equal channel angular pressing ELI Extra low interstitials fcc Face-centered cubic lattice FL Fatigue limit HCF High cycle fatigue hcp Hexagonal close-packed lattice HPT High pressure torsion k’ Cyclic strain hardening coefficient L Grain length l0Initial gage length of the sample LCF Low cycle fatigue LM Light microscopy / microscope m Strain rate sensitivity of flow stress minstInstantaneous strain rate sensitivity N Number of cycles Nfof cycles to failure Number P Load R(εplstrain amplitude ratio) Plastic R(σamplitude ratio) Stress SAED Selected area electron diffraction SEM Scanning electron microscopy / microscope SPD Severe plastic deformation T Temperature TEM Transmission electron microscopy / microscope TMT Thermomechanical treatment UFG Ultrafine-grained
 III
2 mm nm µm GPa %
MPa
µm mm
N
IV List of symbols and abbreviations UTS Ultimate tensile strength MPa w Grain width µm YS Yield strength MPa Greek symbols ˙close-packed phase of titanium alloys Hexagonal ˙IPrimary˙-phase ˙IISecondary˙-phase ˙thThermal expansion coefficient ˚cubic phase of titanium alloys Body-centered -3 ε Technical strain %; 10 εfElongation to failure % εU Uniform elongation % -3 ʽεtotTotal strain range %; 10 -3 ʽεtot%; 10strain amplitude /2 Total -3 εelElastic strain %; 10 -3 ʽεel%; 10 Elastic strain range -3 ʽεel%; 10/2 Elastic strain amplitude -3 εpl%; 10Plastic strain -3 ʽεpl Plastic strain range %; 10 -3 ʽεpl/2 Plastic %; 10strain amplitude -3 ʽεpl,ssaturation plastic strain amplitude %; 10/2 Cyclic -1 έrate s Strain -3 εmax%; 10Maximum strain -3 εminMinimum strain %; 10 ε'BFatigue ductility coefficient -3 εtrueTrue strain %; 10 -3 εu10 Uniform strain %; λ Total extrusion ratio σ Technical stress MPa σmaxMaximum stress MPa σminMinimum stress MPa ʽσ/2 Stress amplitude MPa σ'BFatigue strength coefficient ʽσSMPa/2 Saturation stress amplitude φ° Angle of channels’ intersection in ECAP-die ψreduction of area  Relative %
Introduction and research objectives
1.Introduction and research objectives
 1
Owing to the excellent combination of high strength, corrosion resistance and biocompatibility, titanium and titanium alloys are used in different areas including sea water and chlorine-bearing media; as highly loaded blades of low-pressure stages of steam turbines and parts of aircraft and spacecraft engines; for sports equipment, etc. [Zwi74; Eyl81; Boy97]. Besides, biomedical applications of titanium alloys should be particularly emphasized. Ti alloys are widely used as implant materials. Generally, metallic implants are applied for hard tissue replacement in the human body to help restore motion and support functions of the organism. The first implants were made of stainless steel and cobalt-chromium alloys. However, increasing requirements for biocompatibility of metallic materials led to the use of titanium implants. Due to successful alloying, one of the widely utilized titanium alloys is a two-phase Ti-6Al-4V alloy that exhibits a good combination of strength and ductility. This alloy is manufactured on industrial scales and is a relatively inexpensive material. Moreover, another modification of the alloy with extra low interstitials (ELI) content, which was initially developed for cryogenic applications, is nowadays the mostly used material for hard tissue replacement. High tensile and fatigue strength of titanium implants guarantee relatively long life time of implants for patients. However, medical implants undergo high loads that lead to rapid wear and revision surgery. Up to date, the ultimate tensile strength (UTS) of the Ti-6Al-4V ELI alloy reaches 950 MPa, the relative elongation to failure is at least 11% and the fatigue limit 7 is about 530 MPa [Boy97]. Therefore, the fatigue life is limited to 10 cycles or 10 years at this stress. In order to increase the life time of the implants and avoid or postpone revision surgery, implants with increased fatigue properties are required. For instance, an increase of the fatigue limit by 50 MPa can increase the fatigue life several times. Therefore, the development of the Ti-6Al-4V alloy with high tensile and fatigue properties is of current interest. Since the first International Conference on Titanium in 1968 [Jaf70], numerous studies have been dedicated to improvement of strength of the titanium alloys, see for example [Mar70; Fop70]. The main approaches included solid solution strengthening, heat treatment, and thermomechanical treatment (TMT). However, new alloying elements and high alloyed
2 Introduction and research objectives compositions can confine the application of titanium materials in medicine because of the harmful effect of particular chemical elements on the human body. Strengthening by heat treatment due to control of morphology of phase constituents or dispersion of secondary phases is employed only for a number of titanium alloys and in many instances the possibilities of this approach are already depleted. Work hardening procedures such as rolling, drawing and forging can significantly affect the microstructure and increase the mechanical properties. However, in this case the elongation to failure, which is a very important characteristic, is reduced [Boy97]. One of the perspective methods for improvement of the physical and mechanical properties of metallic materials is the formation of nanocrystalline (NC) or ultrafine-grained (UFG) microstructures using severe plastic deformation (SPD). In this approach large strains are imposed to a material resulting in grain refinement [Val91; Val92]. The most significant results in this field were achieved on pure metals such as aluminum, copper, nickel, titanium, and also on aluminum and copper alloys [Val00]. For instance, the ultimate tensile strength (UTS) of CP-Ti processed by SPD increased by a factor of 2.5 and the fatigue limit by a factor of 1.5 [Vin01a]. These results make it possible to assume that the tensile and fatigue strength of the Ti-6Al-4V alloy processed by the above-mentioned approach will also increase. However, grain refinement in hard-to-deform titanium materials is a technological challenge. Up to the moment of the set up of this work (2003) some experiments on the development of equal channel angular pressing (ECAP, one of the SPD methods) applied to the Ti-6Al-4V alloy were already started. Therefore, it was important to determine the possibilities and effectiveness of the ECAP-method for obtaining an UFG microstructure in the alloy. Hence, the objective of this work is to investigate the influence of the UFG microstructure obtained by ECAP on the mechanical properties of the Ti-6Al-4V ELI alloy and to establish a new class of materials for a successful use in biomedical applications. According to these objectives the following problems are to be solved in the current work: 1) to study the influence of ECAP processing on the microstructure of Ti-6Al-4V of both commercial and ELI purity; 2) to investigate the influence of a combination of ECAP and thermomechanical treatment (TMT) on the microstructure of the Ti-6Al-4V ELI alloy;
Voir icon more
Alternate Text