198
pages
English
Documents
2010
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
198
pages
English
Documents
2010
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Publié le
01 janvier 2010
Nombre de lectures
15
Langue
English
Poids de l'ouvrage
4 Mo
Publié le
01 janvier 2010
Nombre de lectures
15
Langue
English
Poids de l'ouvrage
4 Mo
Investigation of the shock wave/boundary layer
interaction of scramjet intake flows
Von der Fakultät für Maschinenwesen der
Rheinisch-Westfälischen Technischen Hochschule Aachen
zur Erlangung des akademischen Grades eines Doktors der
Ingenieurwissenschaften genehmigte Dissertation
vorgelegt von
Thomas Neuenhahn
Berichter: Universitätsprofessor Dr.-Ing. H. Olivier
Universitätsprofessor Dr.-Ing. J. Ballmann
Tag der mündlichen Prüfung: 25. März 2010
WICHTIG: D 82 überprüfen !!!
Berichte aus der Luft- und Raumfahrttechnik
Thomas Neuenhahn
Investigation of the shock wave/boundary layer
interaction of scramjet intake flows
Shaker Verlag
Aachen 2010Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet at
http://dnb.d-nb.de.
Zugl.: D 82 (Diss. RWTH Aachen University, 2010)
Copyright Shaker Verlag 2010
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of the publishers.
Printed in Germany.
ISBN 978-3-8322-9187-7
ISSN 0945-2214
Shaker Verlag GmbH • P.O. BOX 101818 D-52018 Aachen
Phone: 0049/2407/9596-0 Telefax: 0049/2407/9596-9
Internet: www.shaker.de e-mail: info@shaker.deAcknowledgement
The work presented in this thesis is the outcome of my role as scientific worker at the
Shock Wave Laboratory of RWTH Aachen University. It was mainly funded by the scholar-
ship of the research training group GRK 1095/1: “The aero-thermodynamic design of a
scramjet propulsion system”.
In the first place, I would like to thank the Head of the Shock Wave Laboratory who
acted as my prinicple supervisor – Prof. Dr.-Ing. Herbert Olivier. His endurance when chal-
lenging experimental and numerical results as well as developed theories throughout my
project is highly appreciated. His assistance enabled a deeper insight into my area of study
and thereby raised the sientific level and the value of this thesis. I also express my gratitude
to Prof. Dr.-Ing. Josef Ballmann for being my secondary supervisor, for his support of the
research training group and his interest in my work.
I am indebted to Professor Russle Boyce from The University of Queensland, Australia.
His suggestion to investigate the influence of blunt leading edges as well as his general
guidance and advice during his research activities at the Shock Wave Laboratory and there-
after were of enormous help. During my diploma thesis Professor Allan Paull and his Hy-
Shot team, also affiliated with The University of Queensland, gave me the opportunity to get
hands-on experience with real scramjet engines which finally initiated my interest in scram-
jet-related research. I feel honoured to have participated in their work and got inspired with
their passion.
Dr. Alexander Heufer and Alexander Weiss are appreciated for engaging in the prob-
lems and the theories I worked on, and not to forget their kind friendship. Thanks also to my
students B. Akih Kumgeh, A. Peters, B. Haker, N. Weidner, J. Kitzhofer and S. Tillmann for
their contributions to this thesis and interesting discussions we had.
Another important factor for my research was the enjoyable work environment at the
Shock Wave Laboratory which has been manifested by the “Friday Barbecues Tradition”. I
thank all of my former colleagues and the whole staff creating such atmosphere. Particular
thanks to the workshop headed by Markus Eichler, Heinrich Schobben for his passion and
fatherlike care of the wind tunnel models as well as Hans Peter Michels without whom not a
single measurement would have been taken.
Finally, I want to express my deepest gratitude to my parents for their ongoing concern
and permanent encourangement. To my friends, thank you for maintaining our friendship
and accepting that I spend most of my time on the preparation of this thesis. The last things
said are the best remembered thus being the important ones: I wish to thank my girlfriend
Christine for her love and support over the last few years.
Contents
Contents............................................................................................................................ I
List of Figures ................................................................................................................III
Tables .............................................................................................................................XI
Nomenclature ..............................................................................................................XIII
1 Introduction.............................................................................................................1
1.1 Overview......................................................................................................1
1.2 Aim of the thesis ..........................................................................................4
1.3 Scientific approach and thesis structure........................................................5
2 Hypersonic flow and intake design .........................................................................7
2.1 Shock waves and expansion fans..................................................................9
2.2 Boundary layer ...........................................................................................12
2.2.1 Laminar boundary layer ........................................................................12
2.2.2 Turbulent boundary layer......................................................................15
2.2.3 Boundary layer transition and relaminarization ....................................16
2.2.4 Viscous interaction theory.....................................................................19
2.3 Entropy layer..............................................................................................20
2.4 Shock wave/boundary layer interaction......................................................25
2.4.1 Qualitative behaviour............................................................................27
2.4.2 Quantitative behaviour..........................................................................30
2.5 Three-dimensional flow phenomena ..........................................................35
2.5.1 Goertler vortices....................................................................................35
2.5.2 Finite span effect...................................................................................38
2.5.3 Side wall effects39
2.6 Isolator flow ...............................................................................................40
2.7 Intake design and investigation options......................................................42
3 Experimental testing and numerical simulation ....................................................47
3.1 Hypersonic shock tunnel TH2 ....................................................................47
3.1.1 Principle of a shock tunnel48
3.1.2 Free stream conditions ..........................................................................49
3.2 Measurement techniques ............................................................................51
3.2.1 Pressure measurement...........................................................................51
3.2.2 Temperature measurement and heat flux determination........................52
3.2.3 Schlieren visualisation53
I II Contents
3.3 Model heating technique ............................................................................60
3.3.1 Heating..................................................................................................61
3.3.2 Thermal insulation and active cooling ..................................................64
3.3.3 Thermal expansion................................................................................70
3.4 Numerical flow simulation.........................................................................72
3.4.1 CFD software........................................................................................72
3.4.2 Grid refinement and validation .............................................................72
3.4.3 Menter/Langtry transition model...........................................................74
3.4.4 Mesh splitting technique .......................................................................77
4 Results and Discussion .........................................................................................79
4.1 Derivation of an analytically based model for the SWBLI separation length
79
4.2 Validation and application of the analytically based model .......................85
4.3 Laminar incipient separation process .........................................................88
4.4 Two-dimensional shock wave/boundary layer interaction .........................94
4.4.1 Reynolds