Intertemporal allocation with incomplete markets [Elektronische Ressource] / vorgelegt von Wolfgang Kuhle

icon

120

pages

icon

English

icon

Documents

2010

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

120

pages

icon

English

icon

Documents

2010

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

Intertemporal AllocationwithIncomplete MarketsInaugural Dissertation zur Erlangung des akademischenGrades eines Doktors der Wirtschaftswissenschaften derUniversit¨at Mannheimvorgelegt vonWolfgang KuhleApril 2010Dekan: Prof. Tom Krebs Ph.D.Referent: Prof. Dr. Alexander LudwigKorreferent: Prof. Axel B¨orsch-Supan Ph.D.Korreferent: Prof. David de la Croix Ph.D.Tag der mundlic¨ hen Prufung:¨ 03.08.2010TONataliyaAcknowledgementsThisdoctoralthesiswaswrittenduringmytimeattheMannheimResearchInstitutefortheEconomicsofAging(MEA).IwouldliketothankKlausJaeger,MartinSalm,Edgar Vogel, and Matthias Weiss for helpful discussions and comments on variouschapters of this thesis. Regarding my studies at the mathematics department of theUniversit¨at Mannheim I have to thank Martin Schmidt for his eye-opening lecturesondifferentialequationsanddynamicalsystems. ViktorBindewald,SebastianKlein,Markus Knopf, and Marianne Nowak made the time in the A5 worth while.My parents provided indispensable support and advice. Nataliya Demchenkocontributed to this thesis with her patience and unreserved support. She also trans-formed my drawings into the subsequent figures.I am particularly indebted to my advisors Axel B¨orsch-Supan, David de la Croixand Alexander Ludwig for their support, advice and helpful comments on earlierdrafts of this thesis− they helped me to adopt a more contemporary approach toeconomics.Contents1 Introduction and Summary 11.1 Organization . . . . . . . .
Voir icon arrow

Publié par

Publié le

01 janvier 2010

Langue

English

Poids de l'ouvrage

1 Mo

Intertemporal Allocation
with
Incomplete Markets
Inaugural Dissertation zur Erlangung des akademischen
Grades eines Doktors der Wirtschaftswissenschaften der
Universit¨at Mannheim
vorgelegt von
Wolfgang Kuhle
April 2010Dekan: Prof. Tom Krebs Ph.D.
Referent: Prof. Dr. Alexander Ludwig
Korreferent: Prof. Axel B¨orsch-Supan Ph.D.
Korreferent: Prof. David de la Croix Ph.D.
Tag der mundlic¨ hen Prufung:¨ 03.08.2010TO
NataliyaAcknowledgements
ThisdoctoralthesiswaswrittenduringmytimeattheMannheimResearchInstitute
fortheEconomicsofAging(MEA).IwouldliketothankKlausJaeger,MartinSalm,
Edgar Vogel, and Matthias Weiss for helpful discussions and comments on various
chapters of this thesis. Regarding my studies at the mathematics department of the
Universit¨at Mannheim I have to thank Martin Schmidt for his eye-opening lectures
ondifferentialequationsanddynamicalsystems. ViktorBindewald,SebastianKlein,
Markus Knopf, and Marianne Nowak made the time in the A5 worth while.
My parents provided indispensable support and advice. Nataliya Demchenko
contributed to this thesis with her patience and unreserved support. She also trans-
formed my drawings into the subsequent figures.
I am particularly indebted to my advisors Axel B¨orsch-Supan, David de la Croix
and Alexander Ludwig for their support, advice and helpful comments on earlier
drafts of this thesis− they helped me to adopt a more contemporary approach to
economics.Contents
1 Introduction and Summary 1
1.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 The Optimum Growth Rate for Population Reconsidered 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 The Optimum Growth Rate for Population without Debt . . . . . . . 13
2.2.1 The Planning Problem . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 The Serendipity Theorem . . . . . . . . . . . . . . . . . . . . 15
2.2.3 The Optimum Growth Rate for Population in a Laissez Faire
Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 TheOptimumGrowthRateforPopulationinanEconomywithGov-
ernment Debt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 The Serendipity Theorem with Debt . . . . . . . . . . . . . . 21
2.3.3 The Optimum Growth Rate for Population in a Laissez Faire
Economy with Debt . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.1 Construction of Diagram 1 . . . . . . . . . . . . . . . . . . . . 29
2.5.2 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . 30
2.5.3 Oscillatory Stability . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.4 Formal aspects to Diagram 4. . . . . . . . . . . . . . . . . . . 32
2.5.5 Appendix: Pay-as-you-go Social Security and optimal popu-
lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3 Dynamic Efficiency and the Two-Part Golden Rule with Heteroge-
neous Agents 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.1 Consumption Maximizing Growth . . . . . . . . . . . . . . . . 37
3.1.2 Utility Maximizing Growth . . . . . . . . . . . . . . . . . . . 38
3.1.3 Competitive Incomplete Markets . . . . . . . . . . . . . . . . 393.2 Competitive Markets with Heterogeneous Agents . . . . . . . . . . . 43
3.2.1 Heterogeneous Labor Endowment with Debt . . . . . . . . . . 44
3.2.2 Heterogeneous Labor Endowment without Debt . . . . . . . . 47
3.2.3 Heterogeneous Preferences . . . . . . . . . . . . . . . . . . . . 48
3.2.4 Hicks Neutral Technological Change . . . . . . . . . . . . . . . 50
3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.1 Construction of Diagram 6 . . . . . . . . . . . . . . . . . . . . 53
3.4.2 Comparative Statics . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.3 Proof of Proposition 6 . . . . . . . . . . . . . . . . . . . . . . 56
4 The Optimum Structure for Government Debt 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.1 Population and factor-prices . . . . . . . . . . . . . . . . . . . 61
4.2.2 Implicit and Explicit Government Debt . . . . . . . . . . . . . 62
4.2.3 The Structure of Government Debt . . . . . . . . . . . . . . . 63
4.2.4 The Optimum Structure for Government Debt . . . . . . . . . 64
4.2.5 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.1 Time-Varying Safe Returns . . . . . . . . . . . . . . . . . . . 73
4.3.2 Defined Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.3 A Working Class . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5.1 The Envelope Conditions . . . . . . . . . . . . . . . . . . . . . 77
4.5.2 Characteristics of the Long-run Optimum . . . . . . . . . . . 78
4.5.3 Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5.4 The Covariance Risk . . . . . . . . . . . . . . . . . . . . . . . 81
5 Intertemporal Compensation with Incomplete Markets 83
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6 Demographic Change and the Rates of Return to Risky Capital
and Safe Debt 896.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2.1 Technology and factor-prices . . . . . . . . . . . . . . . . . . . 90
6.2.2 Government Debt . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2.3 Households . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2.4 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.5 Baby-Boom and Equity-Premium . . . . . . . . . . . . . . . . 94
6.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.1 The Effect of Human Capital . . . . . . . . . . . . . . . . . . 95
6.3.2 The Portfolio Decision . . . . . . . . . . . . . . . . . . . . . . 97
6.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
References 102List of Figures
1 Population growth and welfare without debt. . . . . . . . . . . . . . . 18
2 The factor-price frontier as a surrogate budget constraint. . . . . . . . 19
3 The golden rule and government debt. . . . . . . . . . . . . . . . . . . 24
4 The optimum growth rate for population in a laissez faire economy. . 27
5 Competitive incomplete markets. . . . . . . . . . . . . . . . . . . . . . 41
6 The wage-interest tradeoff. . . . . . . . . . . . . . . . . . . . . . . . . 43
7 Intragenerational redistribution and the Engel-curve. . . . . . . . . . . 46
8 Intragener redistr with nonhomothetic preferences. . . . 47
9 Dynamic efficiency and the Engel-curve. . . . . . . . . . . . . . . . . 49
10 Efficient debt structures. . . . . . . . . . . . . . . . . . . . . . . . . . 68
11 Efficiency gains from intertemporal compensation. . . . . . . . . . . . 70
12 Separation of crowding-out and risk sharing . . . . . . . . . . . . . . 71
13 Intragenerational reallocation of the debt. . . . . . . . . . . . . . . . . 76
14 Unfolding the missing markets and intertemporal compensation . . . . 84
15 The contract curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
16 The optimum structure for government debt . . . . . . . . . . . . . . 87
17 Demographic change and portfolio adjustment. . . . . . . . . . . . . 95
18 The human capital effect and portfolio . . . . . . . . . . . 97
19 Myopic adjustment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1001 Introduction and Summary
Falling birth rates accompanied by increasing levels of public debt have been a
common trend among OECD countries over the last five decades. In this context,
the theories of optimal population and government debt, with their longstanding
tradition in social sciences, are of renewed interest. The current thesis presents
five neoclassical parables which emphasize particular aspects of the demographic
transition and the associated role of government debt. The natural framework for
such an analysis is provided by the non-ricardian overlapping generations model.
The first part of this thesis is dedicated to the deterministic overlapping generations
model with its consumption loan market failure and the pivotal two-part golden
rule relation. The second part is concerned with stochastic OLG models where
the consumption loan market failure is complemented by the missing markets for
factor-price risks.
Regarding methodology, this thesis in

Voir icon more
Alternate Text