Interfacial phenomena of liquids in contact with dense CO_1tn2 [Elektronische Ressource] / von Yuliana Sutjiadi-Sia

icon

215

pages

icon

English

icon

Documents

2008

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

215

pages

icon

English

icon

Documents

2008

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

Interfacial Phenomena of Liquids in Contact with Dense CO 2 Vom Promotionsausschuss der Technischen Universität Hamburg-Harburg zur Erlangung des akademischen Grades Doktor-Ingenieurin genehmigte Dissertation Von Yuliana Sutjiadi-Sia aus Makassar 2008 1. Gutachter : Prof.Dr.-Ing. R. Eggers 2. Gutachter : Prof.Dr.-Ing. S. Kabelac Prüfungsausschussvorsitzender : Prof.Dr.Dr.h.c. F. Keil Tag der mündlichen Prüfung : 12.12.2007 Berichte aus der VerfahrenstechnikYuliana Sutjiadi-SiaInterfacial Phenomenaof Liquids in Contact with Dense CO22 tieferstellenShaker VerlagAachen 2008Bibliographic information published by the Deutsche NationalbibliothekThe Deutsche Nationalbibliothek lists this publication in the DeutscheNationalbibliografie; detailed bibliographic data are available in the Internet athttp://dnb.d-nb.de.Zugl.: Hamburg-Harburg, Techn. Univ., Diss., 20072 tieferstellenCopyright Shaker Verlag 2008All rights reserved. No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in any form or by any means, electronic,mechanical, photocopying, recording or otherwise, without the prior permissionof the publishers.Printed in Germany.ISBN 978-3-8322-7072-8ISSN 0945-1021Shaker Verlag GmbH • P.O.
Voir icon arrow

Publié le

01 janvier 2008

Nombre de lectures

38

Langue

English

Poids de l'ouvrage

20 Mo

Interfacial Phenomena of Liquids in Contact with Dense CO2
Vom Promotionsausschuss der
Technischen Universität HamburgHarburg
zur Erlangung des akademischen Grades
DoktorIngenieurin
genehmigte Dissertation
Von Yuliana SutjiadiSia aus Makassar 2008
1. Gutachter 2. Gutachter Prüfungsausschussvorsitzender Tag der mündlichen Prüfung
: Prof.Dr.Ing. R. Eggers : Prof.Dr.Ing. S. Kabelac : Prof.Dr.Dr.h.c. F. Keil : 12.12.2007
Berichte aus der Verfahrenstechnik
Yuliana SutjiadiSia
Interfacial Phenomena of Liquids in Contact with Dense CO 2
2 tieferstellen
Shaker Verlag Aachen 2008
Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.
Zugl.: Hamburg-Harburg, Techn. Univ., Diss., 2007
2 tieferstellen
Copyright Shaker Verlag 2008 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.
Printed in Germany.
ISBN 978-3-8322-7072-8 ISSN 0945-1021
Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9 Internet: www.shaker.dee-mail: info@shaker.de
Acknowledgement
If I have seen further, it is by standing upon the shoulders of giants.
Isaac Newton
This thesis is the result of my work as Ph.D.student at the Institute for Thermal Process Engineering, Heat and Mass Transfer at the Hamburg University of Technology in Germany. The research work was a project of DFG (German Research Community) which was conducted in cooperation with the Institute for Thermodynamics at the Helmut Schmidt University, University of the Federal Armed Forces Hamburg. First of all, I would like to express my deep gratitude to my supervisor, Prof.Dr.Ing. R. Eggers for giving me the opportunity to work in his group, for the valuable discussions despite his full schedule, for the unfailing motivation and for his openness in listening to some new and not so new research ideas. To Prof.Dr.Ing. S. Kabelac from the Helmut Schmidt University, many thanks for being the coevaluator of this thesis, and for proofreading and giving me suggestions on my manuscript for the publication of one part of this work. My sincere gratitude to Prof.Dr.Dr.h.c. F. Keil who chaired the examination committee. The pleasant working atmosphere in Harburg has helped me a lot to endure life when the research did not deliver the desired results, and enriched my horizon about how a research community works. I am indebted to all my colleagues for their outstanding cooperation, the help they provided for me whenever it was needed and the coffeebreak times which brought both fruitful as well as nonscientific significant discussions. I wish to mention Dr.Ing. Philip Jaeger who helped me a lot in revising various of my manuscripts which I prepared for the final report of the project, and also on the research proposal submitted to DFG, and papers prepared for conferences. My sincere thanks to Dr.Ing. Dagmar Dittmar and Dr.Ing. Henning Marckmann who taught me at the beginning about the field of work, Bärbel MietznerBoldt for technical support and Pablo Zacchi for the pleasant atmosphere in the office. For various fruitful academic discussions I would like to thank Dr. Ing. Philip Jaeger, Dr.Ing. Dagmar Dittmar and Dr.Ing. Bastian Arendt. This work would have not reached its final state without the support of my Master’s thesis students and those who helped me as student assistants. They were Karin Dietl, Christian Schacht, Niels Moser, Korhan Cinar, Tania Sainz Martin and Zulema Sanz Raliegos. Finally, my grateful thanks to my parents, aunts and family in Indonesia who enabled me the study in Germany and without whose support I would have never completed this thesis. To all my friends in Hamburg, thank you.
To my parents and aunts
Contents
1
2
2.1
2.2
Contents
INTRODUCTION AND AIM OF WORK ________________________________ 1
INTERFACIAL TENSION __________________________________________ 5
Thermodynamical Background________________________________________________________ 8
Pendant Drop Fundamental Equation _________________________________________________ 13
2.3________________________________________________________________ 17Experimental Setup 2.3.117Interfacial Tension at High Pressure Condition __________________________________________ 2.3.218Density at High Pressure Condition ___________________________________________________
2.4
Drop Phenomena __________________________________________________________________ 20
2.5Interfacial Tension Results___________________________________________________________ 232.5.124Static Interfacial Tension ___________________________________________________________ 2.5.2Interfacial Tension as Mass Transfer Proceeds __________________________________________ 25
3
3.1
3.2
3.3
3.4
3.5
4
WETTING CHARACTERISTICS OF A SESSILE DROP _________________ 31
Theoretical Background_____________________________________________________________ 32
Experimental Setup ________________________________________________________________ 35
Some Remarks ____________________________________________________________________ 37
Static Wetting Angles _______________________________________________________________ 40
Dynamic Wetting Angles ____________________________________________________________ 43
ON THE SOLIDVAPOUR INTERFACIAL TENSION ____________________ 47
4.1Theoretical Background according to Good and Girifalco _________________________________ 484.1.148Free Energy of Adhesion and Cohesion________________________________________________ 4.1.2___________________________________________________________ 50Quasicontinuum Model 4.1.3Intermolecular Potential Functions ___________________________________________________ 52
4.2SolidVapour Interfacial Tension of Teflon, Glass and Steel Against Carbon Dioxide __________ 574.2.1____________________________________________________________________ 57First Attempt 4.2.264Subsequent Improvements __________________________________________________________
4.3
Some Remarks ____________________________________________________________________ 66
i
Contents 5LIQUID RIVULET GEOMETRY _____________________________________ 69
5.1
5.2
5.3
5.4
5.5
5.6
5.7
6
6.1
6.2
6.3
6.4
Introduction_______________________________________________________________________ 69
Experimental Setup ________________________________________________________________ 71
Qualitative Results _________________________________________________________________ 74
Thickness and Width of Water Rivulet_________________________________________________ 76
Theory on Rivuletwetting Angle______________________________________________________ 78
Water Rivuletwetting Angle _________________________________________________________ 80
Rivulet Instability __________________________________________________________________ 83
FLUID DYNAMICS OF FALLING FILM_______________________________ 85
Nusselt Film Condensation Theory ____________________________________________________ 85
Wall Model _______________________________________________________________________ 88
A Comparison of Measured and Calculated Mean Velocity________________________________ 88
Parabolic Velocity Profile____________________________________________________________ 89
6.5Tau Model ________________________________________________________________________ 946.5.1Wetting Angle up to 90° ___________________________________________________________ 946.5.2Linearization of the Velocity Profiles ________________________________________________ 1006.5.3Wetting Angle above 90°__________________________________________________________ 103
6.6
7
List of Equations __________________________________________________________________ 108
VELOCITY PROFILE AND MEAN FILM VELOCITY ___________________ 113
7.1Velocity Profile in the Film Phase ____________________________________________________ 1147.1.1Wetting Angle up to 90° __________________________________________________________ 1157.1.2Wetting Angle above 90° __________________________________________________________ 117
7.2120Mean Film Velocity: Theoretical Background __________________________________________ 7.2.1Wetting Angle up to 90° __________________________________________________________ 1207.2.2Wetting Angle Above 90° _________________________________________________________ 123
7.3
7.4
7.5
Experimental and Calculated Mean Velocity___________________________________________ 125
Interdependency of Mass Transfer and Falling Film Thickness ___________________________ 129
List of Equations __________________________________________________________________ 132
ii
8
8.1
Contents VELOCITY BOUNDARY LAYER __________________________________ 135
The Thickness ____________________________________________________________________ 135
8.2136Fluid Dynamics ___________________________________________________________________ 8.2.1Wetting Angle up to 90° __________________________________________________________ 1368.2.2138Wetting Angle above 90°__________________________________________________________
8.3143Velocity Profile ___________________________________________________________________ 8.3.1__________________________________________________________ 143Wetting Angle up to 90° 8.3.2144Wetting Angle above 90°__________________________________________________________
8.4The Influence of Fluid Dynamics and Material Properties________________________________ 1468.4.1Constant Film Thickness __________________________________________________________ 1488.4.2Constant Mean Velocity___________________________________________________________ 150
8.5
9
List of Equations __________________________________________________________________ 153
SHEAR STRESS EXERTED AT RIVULET AND FILM SURFACE _________ 155
9.1Theoretical Background____________________________________________________________ 1559.1.1__________________________________________________________ 155Wetting Angle up to 90° 9.1.2157Wetting Angle above 90°__________________________________________________________
9.2
9.3
10
11
11.1
11.2
Mean Surface Shear Stress _________________________________________________________ 159
List of Equations __________________________________________________________________ 161
BIBLIOGRAPHY _____________________________________________ 163
APPENDIX __________________________________________________ 177
Single Drop ______________________________________________________________________ 177
Rivulet __________________________________________________________________________ 186
iii
Voir icon more
Alternate Text